

jqGrid
a jQuery Plugin

by

Tony Tomov

Version 3.4
Released February 2009

jqGrid jqGrid

- 2 -

Table of Contents

jqGrid ... 4
Acknowledgements ... 5
What's New in This Release? .. 6

Version 3.4 .. 6
Version 3.3.2.. 9
Version 3.3.1.. 10
Version 3.3 .. 11
Version 3.2.2.. 13
Version 3.2.1.. 15
Version 3.2 .. 15
Version 3.1 .. 18

Introduction .. 19
Requirements ... 19
Do I need to Pay for jqGrid? ... 20
Installation ... 20
How it Works .. 23

Tutorial: Creating Your First Grid .. 25
The Data.. 25
The HTML .. 25
The Server-side File .. 28
PHP and MySQL .. 29
COOP Example ... 31

Retrieving Data .. 33
XML Data ... 33
JSON Data ... 38
Array Data ... 43
Function .. 45
User Data .. 46

Basic Grids .. 48
Properties .. 49
Importing/Exporting Grid Configuration ... 56
Events ... 58
Methods... 59
Integrations ... 65

Navigating ... 67
Properties, Events and Methods .. 68
Custom Buttons .. 69

Searching .. 71
Searching on a Single Field .. 71
Searching on Many Fields ... 73

Editing .. 76
Cell Editing... 76
Inline Editing .. 78
Methods... 81
Form Editing... 84

Advanced Grids .. 92
Multiselect Grids ... 92
Subgrids .. 94
Master/Detail Grids ... 100
Treegrids ... 102

jqGrid jqGrid

- 3 -

User Modules ... 113
Posting Data... 113
Formatter .. 114
Show/Hide Columns .. 117
Table to jqGrid ... 118

Case Applications ... 119
Images in Grids .. 119
Dynamic Editing Forms .. 120
Search Forms ... 123

Trouble-Shooting ... 127

jqGrid jqGrid

- 4 -

jqGrid

jqGrid is an Ajax-enabled JavaScript control that provides solutions for representing and manipulating
tabular data on the web. Since the grid is a client-side solution loading data dynamically through Ajax
callbacks, it can be integrated with any server-side technology, including PHP, ASP, Java Servlets, JSP,

ColdFusion, and Perl.

jqGrid uses a jQuery Java Script Library and is written as plugin for that package. For more information
on jQuery, please refer to the jQuery web site.

jqGrid's Home page can be found here.

Working examples of jqGrid, with explanations, can be found here.

I started the idea when I needed an easy way to represent database
information in my project. The first requirement was speed and the
second, independence from server-side technology and the database
backend.

– Tony

http://jquery.com/
http://www.trirand.com/blog/
http://trirand.com/jqgrid/jqgrid.html

Acknowledgements jqGrid

- 5 -

Acknowledgements

Author

The author of jqGrid and its accompanying documentation is Tony Tomov. Suggestions for

enhancements, reports of bugs, and requests for help can be made on jqGrid's community forum.

Special Thanks

Special thanks to Brice Burgess for the invaluable advice, writing the shrinkToFit feature and, of course,
providing the excellent jqModal plugin used by jqGrid.

Contributors

Paul Tiseo contributed grid.postext.js.

Piotr Roznicki (roznicki@o2.pl) contributed the modal dialog.

Peter Romianowski (peter.romianowski@optivo.de) contributed the table to jqGrid function.

Joshua Burnett (josh@9ci.com) contributed jquery.fmatter.js

Participants in the jqGrid forum have contributed significantly by asking questions for clarification, by
pointing out problems, and by suggesting ideas for enhancements.

Editor

This documentation is edited and maintained by Reg Brehaut. Reports of errors or confusing expressions,

and suggestions for inclusion or enhancement can be made on the forum or directly to Reg.

Software

This documentation has been produced using West Wind's HTML Help Builder, quite possibly the best
product of its kind on the market. Check out how it can help you document your system, today.

http://www.trirand.com/blog/
http://www.trirand.com/blog/?page_id=18
mailto:roznicki@o2.pl
mailto:peter.romianowski@optivo.de
mailto:josh@9ci.com
http://www.trirand.com/blog/?page_id=18
http://www.secondpersonplural.ca/
mailto:reg@secondpersonplural.ca?subject=jqGrid%20Documentation
http://www.west-wind.com/wwhelp/

What's New in This Release? jqGrid

- 6 -

What's New in This Release?

As new versions are released, Release Notes will be posted here.

Version 3.4

Released 2009-02-15

Bug Fixes

 Clear button in filterGrid: now when the clear button is clicked, any default values to be posted to
the server are passed as the key, not the value

 Checkbox in form edit: now we correctly post the unchecked value
 Caption when reloading the grid: fixed bug in FireFox

 saveRow (inlinedit): when posting non-editable empty hidden fields
 GridUnload and GridDestroy now remove the modals from formediting if they are present
 setCell: attribute fix
 onSelectCell now works with multiselect = true

 select in createEl function: corrected multiple bugs and size properties
 pager buttons: fixed bug when they have attr disabled
 edittype select in inline edit now works
 setRowData/getRowData methods: fixed problem in IE7 when jQuery 1.3.1 is used

 datatype "clientSide" now fixed
 Sorting data where the colname contain a dot now works
 Reading data containing &,>,<," now works
 Saving edited data containing <,>,&," now works

 Restoring a row in celledit now works
 SearchGrid events beforeShowSearch, afterShowSearch and onInitializeSearch now work
 Grids can now be used with other js libraries, like prototype (bug in grid.common.js has been

fixed)

 With inline editing and the grid is enclosed in a form element, saving a row with the Enter key
now works

 Formatter now works with local data sorting and sorttypes when data is 'local' (bugs in the beta
versions now fixed)

 Code optimizations and other minor fixes

Treegrid

 Sorting an expanded column now works
 Support for json in TreeGrid now works
 setRowData method is now compatible with treeGrid

What's New in This Release? jqGrid

- 7 -

Additions & Changes

New Modules

 grid.import.js: jqGrid import/export module
 json2.js: json utilities used in import/export module
 JsonXml.js: xml/json utilities used in import/export module
 jquery.fmatter.js: jqGrid formatter (thanks to Joshua Burnett)

All of these modules are included, by default, in the new version of jquery.jqgrid.js. If you don't need
them, you will have to make adjustments there.

Enhancements to Existing Modules

 Added parameters in colModel: formatter and formatoptions. Supports custom and predefined cell
formatting (links, checkboxes, email, numbers, currency, date, and select).

 Added two methods jqGridImport and jqGridExport to dynamically load the grid configuration and
data from xml, xmlstring, or jsonstring.

 Added parameter scroll (boolean, default false) to create dynamic scrolling grids. When enabled,
the pager elements are disabled and we can use the vertical scrollbar to load data.

 Added parameter scrollrows (boolean, default false). When enabled, on navigating to a hidden
row the grid scrolls so the selected row becomes visible.

 Added parameter label to colModel to set the header for a column in the grid. The order of priority
for determining the name of the column is the colNames array; the label property in colModel, the
name property in colModel.

 Added parameter multiboxonly (boolean, default false). This option implements Yahoo-style row
selection to multiselct grids. When set to true, a row is selected only when the checkbox is
clicked.

 Added 5th parameter to setCell method - an array of attribute properties for the cell.
 Removed default title that shows when we mouseover the column. This allows changing the title

dynamically. Typically this can be used in afterInsertRow event using the new parameter in
setCell method (see above).

 The loadui option "block" now can be configured to display a loading.gif (changes in the css)
 The second parameter in getCell, iCol, now can be not only the index of the col, but the name.
 When using json data with named values (i.e. the repeatitems option is false) we can use dot

notation and index notation
 Inline editing now supports client side validation
 When saving with inline editing, we can now set the url (or editurl) parameter to 'clientArray' so

that the data is not posted to the server but is saved only to the grid (presumably for later
manual saving).

 Added option prmNames (array). This array allows changing the names of the parameters posted
to the server.

 The select values in an editing module can now be set as an array as well as a string.
 Added a second parameter to setSelection: onselectrow (boolean, default true). If set to false, the

onSelectRow is not launched
 When multiselect is set and we use onRightClickRow the row is not selected.
 added 4th parameter to setLabel: an attribute array to set attribute properties for the element
 In editing modules, when a field is not required but other validation or checking is provided, there

is no alert message when the data is empty.
 jQuery 1.3.1 support

What's New in This Release? jqGrid

- 8 -

SubGrids

 Added method expandSubgridRow(rowid): dynamically expand the subgrid row with the id =
rowid

 Added method collapseSubGridRow(rowid): dynamically collapse the subgrid row with the id =
rowid

 Added method toggleSubGridRow(rowid): dynamically toggle the subgrid row with the id = rowid
 Added methods subGridJson(json, sid) and subGridXml(xml, subid)
 Added property subgridtype to allow loading subgrid as a service.

Tree-Grid

 Tree grid now supports Adjacency model

CSS: Themes

Thanks to Joshua Burnett (josh@9ci.com) we now have a Steel theme

Other changes have been made to the CSS files; if you use them just as they come, all you need to do is
instsall the new ones over your old ones. But if you have modified your copies, then you may prefer to
implement the following changes individually:

.GridHeader { display:none;}

should be replaced with

.GridHeader {}

div.loadingui

should be replaced with

div.loadingui {

 display:none;

 z-index:6000;

 position:absolute;

}

 new item should be added

div.loadingui div.msgbox {

 position: relative;

 z-index:6001;

 left: 35%;

 top:45%;

 background: url(images/loading.gif) no-repeat left;

 width: 100px;

 border: 2px solid #B2D2FF;

 text-align: right;

 height: auto;

 padding:2px;

 margin: 0px;

mailto:josh@9ci.com

What's New in This Release? jqGrid

- 9 -

}

These changes replace the original red "Loading" message at the upper left of the grid with a new

cleaner message and animated icon in the middle of the grid. To make this work, copy the loading.gif
from image directory of the new version to the appropriate place. This appears, of course, only when you
have loadui:"block" in the grid configuration.

Version 3.3.2

Released 2008-12-14

Bug Fixes

 getRowData: now correctly parses the html entities <>,& and " when data is retrieved
 addRowData: inserting data with value 0 was previously interpreted as boolean false and an

empty value was inserted; now handled correctly
 setCaption: now sets the caption as html rather than as text (and so now respects embedded

html entities)
 clearGridData: now correctly sets initial parameters such as page, records and lastrow

 afterSubmitCell (in cell editing): was always evaluated to false; now evaluation is appropriate
 in all editing modules: the html entities <,>,& and " are interpreted correctly when retrieved from

the grid row
 corrected bug in textarea when the field is empty and data is retrieved from grid.

 corrected bug when key:true is set in the colModel and we are using subgrid and multiselect. Prior
to this fix, the index of the key was not being correctly calculated.

 Navigator Bar: when a url parameter is defined for both actions Add and Edit, prior to this fix the
first one retrieved was used for both; now they both used appropriately.

 Inline Editing: when the element is a checkbox, the posted data was not being retrieved correctly
from colModel; now it is.

 saveRow method in Inline Editing: prior to this fix, the values of hidden fields were not being set
correctly in the grid after the data is posted.

Cross-browser Issues

 corrected bug when IE7 is used in cell editing: the index number of hidden cells was not being
calculated correctly

 corrected bug when IE7 is used in form editing: the close button of the modal was not appearing
correctly

 corrected bug when IE7 is used in form editing: when dragging or resizing the modal window, the
text in input fields would disappear.

Additions & Changes
Basic Grid

 added new event: beforeSelectRow (rowid) fires when a row has been clicked on, but before it is
selected; returns true or false and if false, the row is not selected.

 added support for date validation in form editing module: editrules : {date:true}

 added support for "drag and drop" to rearrange rows, using tableDnD.js

Search Form

What's New in This Release? jqGrid

- 10 -

 added a new property to the colModel (searchhidden:true) to support searching on hidden
fields:to include a hidden field in the search form, add searchhidden:true to the editrules option:
e.g.,
{ ... hidden:true, search:true, editrules:{searchhidden:true}}

Navigation Bar

 if pgtext parameter is set to empty string or false, the text and the total number of pages are not
shown in the pager bar

 the order of the buttons is changed to a more natural order: Add, Edit, Delete, Search, Refresh

Form Editing

 added new event: afterComplete(serverResponse, postdata, formid) fires immediately after all
actions and events are completed and the row is inserted or updated in the grid

 added new event: onclickPgButtons(whichbutton, formid, rowid) fires after button is clicked
before new data is loaded

 added new event: afterclickPgButtons(whichbutton, formid, rowid) fires after button is clicked and
adfter new data is loaded

 added new parameter in editGridrow: addedrow - can be 'first' or 'last'

Cell Editing

 added support for using shift+tab, when navigating through the edited cells.
 it is possible to once again use cell editing with multiselect (i.e the combination multiselect: true,

cellEdit:true). With this combination, rows are selected/deselected only when we click on
checkbox.

Subgrids

 the minus icon is replaced after the subGridRowExpanded is called. This way we can easily call a
custom function to collapse all opened subgrids when we expand one.

Common

 added Brasilian and Turkish translations

Version 3.3.1

Released 2008-11-01

Bug Fixes

 fixed bug when sorting data: the index was not being set correctly when the name is different
from the index

 fixed bug in trigger("reloadGrid"): was not clearing the saved cell when cellEdit is true
 fixed bug in pager: was not hiding correctly when header button is enabled

 fixed bug in cell editing when the jQuery datepicker is not present.
 fixed bug in cell editing when the first cell is saved with enter key
 fixed bug in filterGrid method when search property is set in colModel

What's New in This Release? jqGrid

- 11 -

 fixed bug in filterGrid method when select box is used: it was impossible to use it in other

methods
 fixed bug in editGridRow method: the events beforeSubmit, afterSubmit and onclickSubmit were

not firing correctly when used in add and edit mode together.

Additions

 added formatCell event in cell editing to support formatting the cell content before editing
 added Row highlighting in cell editing

 added auto width when editing a cell, row or form and size property is not set (applies only to
text and textarea elements)

 added an additional parameter in editGridRow: recreateForm. When set to true the form is
recreated every time

 added Polish, Portuguese, Russian and Spanish translations

Version 3.3

Released 2008-10-14

IMPORTANT: Modules have been restructured

In response to many requests, the structure of the modules has been revised.

 all text strings now reside in a separate module. This will allow dynamically changing the
language. The modules are named grid.locale-(two letters for the locale).js. For example, for
English this should be grid.locale-en.js. Modules available are English (en), Bulgarian (bg) and
Italian (it).

 Also, to overcome writing a lot of repeatable code for inline, form and cell editing modules, some
common functions have been gathered in another module called grid.common.js.

Both of these new modules are required for the proper functioning of jqGrid.

Bug Fixes

 fixed editRow method where addRowData method is used; there was a bad 3rd parameter: 'top'
instead of 'first'.

 fixed jsonReader when trying to set the id of the row from non-existing data
 fixed jsonReader bug when trying to set id:0
 fixed beforeInitData event in formedit module when we create the modal for first time
 fixed validation in formedit module when the first column has a validation rule

 fixed bug in inline edit module when running in IE6/IE7 and setting input text with attr size = 0
 fixed bug in image path when creating modals.
 fixed resizing bug when jqGrid is used with jQuery UI
 fixed bug in FF when trying to show caption

 doubleclick has been removed from tree grid as it was causing problems in selection
 fixed bug when clicking on a checkbox of a particular row and multiselect is true and multikey is

set

What's New in This Release? jqGrid

- 12 -

 fixed bug in aftersavefunc - the response parameter passed to this event is now

response.responseText (introduced in early releases of Version 3.3).
 fixed bug in the loader - support for Safari.

User Contributions

 Show/Hide Columns, a modal dialog allowing users to choose which columns to show or hide.
Contributed by Piotr Roznicki.

 Table to jqGrid, Convert an existing html table to jqGrid. Contributed by Peter Romianowski.

Additions and Enhancements

Installation

The structure of the package is extended with two additional folders containing packed versions of
jqGrid. See Installation.

basegrid

 added property forceFit (boolean, default false) When set to true and resizing the width of a
column, the adjacent column (to the right) resizes so that the overall grid width is maintained
(e.g., reducing the width of column 2 by 30px increases the size of column 3 by 30px). In this
case there is no horizontal scrolbar. Note: this option is not compatible with shrinkToFit option -

i.e if shrinkToFit is set to false, forceFit is ignored.
 added property sortclass (string, default 'grid_sort') the class to be applied to the header element

(<th>) of the currently sorted column
 added property resizeclass (string, default 'grid_resize') the class to be applied to the columns

that are resizable so that we can show a resize handle for ones that are resizable
 added property gridstate (string) Determines the current state of the grid (i.e. when used with

hiddengrid, hidegrid and caption options): can be either 'visible' or 'hidden' .
 added event onHeaderClick(gridstate) can be used when clicking to hide or show the grid;

gridstate is defined in the previous point.
 added event onCellSelect(rowid, iCol, cellcontent) fires when we click on particular cell in the

grid; rowid is the id of the row, iCol is the index of the cell cell, content is the content of the cell.
(Note that this available only when we are not using the cell editing module -- and is disabled

when using cell editing). Important note regarding IE6: this event may exhibit strange behaviours
because of a bug in early IE6 releases. When we have a hidden column the index will not be
calculated correctly. You can avoid using this feature in a grid with hidden columns, test for these
browsers and conditionally suppress this feature, or suggest that your IE6 users upgrade. For
more information refer to http://support.microsoft.com/kb/814506

 added method setGridWidth(new_width, shrink) sets a new width to the grid dynamically.
new_width is the new width in pixels. shrink (default true) has the same behavior as shrinkToFit

 added method setGridHeight (new_height) sets the new height of the grid dynamically. Note that
the height is set only to the grid cells and not to the grid. new_height can be in pixels,

percentage, or 'auto'
 added method getCell (rowid, iCol) gets the content of the cell with id = rowid and index column

iCol. Note that iCol is a index and not a name.
 added a third parameter to the afterInsertRow event: rowelem, the element from the response.

 added a third parameter to the onSortCol event: sortorder, the sorting order (either 'asc' or
'desc').

 added method addJSONData: add json data from a custom response into the grid.
 added method addXmlData: add xml data from a custom response into the grid.

http://support.microsoft.com/kb/814506

What's New in This Release? jqGrid

- 13 -

 added new DataType, function to take advantage of new methods (addJSONData and

addXmlData)

We can now sort a column based on another column. For example, if we have a formatted datetime
column for display purposes plus a hidden int value of that datetime, sorts on the displayed column can
be based on the hidden one. This can be achieved when using onSortCol event this way:

onSortCol: function(name,index) {

 if(name == 'displaydate') {

 jQuery("#grid_id").setGridParam({sortname:"hiddendate"});

 }

}

colModel

The following apply to all editing modules: inlineedit, formedit, celledit

 added new email validation to editrules: e.g., editrules:{email:true}
 added new edit type: password. e.g., edittype:"password"

 added suport for multiple selection of options in select boxes, e.g., editoptions:{multiple:true,
size:4... }

formEditing

 added option checkInput (Boolean) in searchGrid method. When set to true in search Dialog there
is a validation of values according the rules in colModel (editrules option)

 added event onInitializeSearch in searchGrid method. This event fires only once when the form is

constructed
 added events beforeShowSearch and afterShowSearch in searchGrid method. These events fire

before and after showing the search dialog.
 added option title in navButtonAdd - a tooltip option for the button.
 added support for multiple select boxes (see addition to colModel).

Cell editing

This is a new feature of jqGrid, supporting navigation through a grid cell-by-cell with editing (for cells
marked as editable). See Cell Editing for details.

Important Note: currently cell editing does not work in Safari browser.

treegrid

 can now use JSON data.

custom

 added support for searching on multiple fields, see Searching - Multiple Fields

Version 3.2.2

What's New in This Release? jqGrid

- 14 -

Released 2008-08-10

Bug Fixes

 fixed setColProp method to exit when the column properties are set
 fixed bug in colspan in a subgrid when hidden fields are present
 fixed error function in saveRow method in Inline editing; $.post has been replaced with $.ajax
 fixed bug in formedit when using html tags in column names

 fixed bug in multikey compare
 fixed addRowData method: when adding a empty value, IE was not correctly displaying the

border of the cell
 fixed bug in pager when trying to dynamically add an additional class

 fixed bug in clearGridData method: was not correctly resetting some values
 fixed a bug when key: true : was not working correctly with either xml or JSON data types under

some conditions
 fixed pginput bug. Previously this would hide the number of pages; now the number of pages and

records are hidden if viewrecords is set to false
 fixed bug in sorting local data when try to sort a cell which contains additional html tags
 fixed bug in sorting local data when multi select is true: the header check box does not change

the state if sorting on some column

 fixed bug in sort local data when trying to set the column dynamically with onSortCol event
 fixed bug in FireFox 2 when height is set to 'auto'
 fixed bug in Firefox 3 on Mac related to css visualization

Additions

basegrid

 added another parameter to the addRowData method: addRowData(rowid, data, position,
srcrowid) where position has the following values: first, last, before, after. The before and after
options refer to the row id set in srcrowid (the new row is inserted before or after this row; if the
srcrowid is not found, no data is inserted).

 added new property pgtext: this is the text that appears before value for totalpages in pager. The
default value is "/"

formedit

 the pager in navButtonAdd can be set either as '#pager_id' or 'pager_id'
 all modal windows in formedit module now have a zIndex of 950 to be compatible with the

datepicker or other plugins, such as autocomplete.
 added 2 new parameters to the editGridRow method:

1. onclickSubmit event; this fires after the submit button is clicked and after the postdata is
constructed, but before the data is submitted to the server. Parameters passed to this
event is an options array of the method. The event should return array of type {}.

2. editData property: an array that is initially empty and can be used to dynamically add

parameters to the content (postdata)

 added 2 new parameters to the delGridRow method, with the same role as those in editGridRow
method (described above):

1. onclickSubmit event
2. delData property

What's New in This Release? jqGrid

- 15 -

treegrid

This module is currently under development and should be used with care. It is not recommended for

use in a production environment. For more information refer to jqGrid Forum: TreeGrid component.

Version 3.2.1

Released 2008-07-23

Bug Fixes

 corrected 100% height bug in FF
 corrected bug in showCol when showing the last column in grid when it was initially hidden
 corrected shrinkToFit bug when columns in colModel initially have no width set.

 corrected altRows bug when using xml datatype
 corrected bug in the following methods when try to use grid as subgrid:

getDataIDs, setSelection, resetSelection, getRowData, delRowData, addRowData, hideCol,
showCol, setCell, setRowData

 corrected viewRecords bug when the rowNum parameter is not set

 corrected bug in shrinkToFit when using grid as a subgrid

Improvements

 addRowData speed improvements (contributed by Peter Romianowski)

Additions

formedit

 Added additional parameter mtype in editRow and delRow methods.

This parameter have the same sense as those in jqGrid: possible values are "POST" or "GET",
default is "POST"

basegrid

 added property pgbuttons (boolean). This disables or enables the pager buttons in pager if
present. Default true

 added property pginput (boolean) This disables or enables the input box in pager if present.

Default true

Version 3.2

Released 2008-07-15

IMPORTANT: Required Actions for Updating

What's New in This Release? jqGrid

- 16 -

1. Some methods, parameters or options have been removed in this release; please refer to

Obsolete Properties and Obsolete Methods to see what has been removed and what to use
instead.

2. The distribution of code across modules has been enhanced to allow for future expansion while
still keeping the basic package as small as possible. Please review the contents of jquery.jqGrid.js

to see what you may need to add or change. See Installation.
3. Additions have been made to the CSS files (in themes); either replace the previous versions with

what comes with this release or, if you have incorporated the jqGrid CSS settings into your own
CSS files, review and revise the sections noted here:

 /* Pager *//

 ...

 /* End Pager *//

and

/*Subgrid text mode*//

...

/* End Subgrid *//

4. Previous versions of jqModal are not compatible with jQuery 1.2.6; please replace your copy of
jqModal.js with the updated version included in this release.

Bug Fixes

 corrected bug in delRowData and setRowData methods when using two or more grids and trying

to delete/update a row with the same id
 corrected bug with url parameter in editGridRow (now the url can be changed dynamically)
 corrected bug in modal window
 corrected bug in formedit with class names
 corrected bug when the [Enter] key is pressed in editGridRow

 corrected bug in Safari 3 when resizing columns
 corrected bug with header columns and data columns position
 corrected misaligment between table header and table rows bug in IE (this reduces the header

width by 1px and previously tight columns may now cut off the header text slightly)

 corrected bug in hideCol and showCol methods in IE
 corrected bug in IE when inline edit of element of type select
 corrected bug in safari when try to use pager in grid as subgrid
 corrected bug in navigator when try to attach buttons in grid as subgrid

 corrected mouseover bug when using grid as subgrid
 corrected bug when shrinkToFit parameter is set to false and the grid is resized
 corrected jquery.jqGrid.js loader bug
 corrected bug in delGridRow method when using modal for first time

 corrected bug in getRowData method to properly handle empty fields
 corrected bug in inline edit when restoring non-editable cells
 corrected bug that occured when starting to resize a column but the mouse is not moved
 corrected bug in subgrid when the data in a cell is wider than the width of the cell.

Additions & Changes

grid base

 added afterInsertRow(rowid, rowdata) event - fires after every inserted row. Rowid is the id of
inserted row. Rowdata is array of the inserted values. The array is of type name:value, where the
name is the name from colModel.

What's New in This Release? jqGrid

- 17 -

 added setLabel(colname,newlabel, sattr) method set a new label to the header. We can set

attributes and classes (sattr). If sattr is a string, we add a class using the using the jQuery
addClass. If sattr is array we set css properties via jQuery css

 added gridComplete event - fires after all the data is loaded into the grid and all other processes
are complete

 added onSelectAll(array of the selected ids) fires (if defined) when multiselect is true and you
click on the header checkbox. Parameter passed to this event is an array of selected rows. If the
rows are unselected, the array is empty.

 added clearGridData - clear the currently loaded data from grid

 added loadError - fires when a error in ajax request
 added loadBeforeSend - fires before sending the request
 added method setCell. This very useful method can change the content of particular cell and can

set class or style properties.
 added property hiddengrid. If set to true the grid initially is hidden. The data is not loaded and

only the caption layer is shown. When click to show grid the data is loaded and grid is shown.
From this point we have a regular grid.

 added property loadui - "disable", "enable", "block"
 onPaging(which button) fires when a pager button is clicked and before populating the data;

accepts which button is clicked: first, last, prev, next
 resetSelection method now resets the header checkbox, if mutiselect is true
 hidden fields are no longer included in the calculation of the grid width
 the grid should be set only with table element and class. The cellSpacing, cellPadding and border

attributes are added automatically.
 hideCol and showCol can accept an array of data as parameter. Example:

hideCol(["name1","name2"]) will hide the name1 and name2 columns. Also the method can
accept a single string as parameter - i.e. hideCol("name1").The same applies to the showCol

method
 the appropriate sort image now appears in the column heading when the grid is initially loaded

and the sortname is set.

formedit

 added method navButtonAdd - add a custom button to pager
 added method GridToForm
 added method FormToGrid
 added property editrules: {edithidden:true, required:true(false), number:true(false),

minValue:val, maxValue:val}
 editGridRow can now accept default values in input text field, when action is add

 searchGrid now searches not by name but by the index name, if any

inlineedit

 added onerrorfunc as the 6th parameter in saveRow to handle errors returned from the server;
also can be passed from editRow (where it is the new 8th parameter) when using the [Enter] key
to trigger the save.

Miscellaneous

 improved performance in json and xml data reading when using zebra-striping
 improved performance (by 50%) in addRowData and setRowData methods
 improved performance of reading data when browser is IE or Mozilla (related to corrected

misaligment bug)

What's New in This Release? jqGrid

- 18 -

 formedit (modal windows) are now compatible with jQuery 1.2.6

 formedit is now compatible with other JS libraries, like Prototype

Version 3.1

Released 2008-04-05

Bug Fixes

 grid width bug when hidden fields are set and width of grid too.
 fixed bug in setSortName method.
 fixed bug in addRowData method when add at top of the grid and grid has no data.
 CSS bug when editing input type=text field in inline edit module
 added missed functions in editGridRow method
 fixed bugs with events names in formedit module

IMPORTANT: Some methods are to be removed in the next release; please refer to Replaced Methods to
see which will be removed and what to use instead.

Additions

 added getGridParam method - this method requested parameters from option array of the grid. If
the parameter is empty - the entry options are get

 added setGridParam method - set a particular parameter. Note - for some parameters to take
effect a trigger("reloadGrid") should be executed. Note that with this method we can override
events like onSelectRow and etc.

 added onPaging event - this event fires after click on page button and before data population
 added resetSelection method - this method reset (unselect) the selected row(s)
 added option toolbar add at bottom or at top of the gridbody div element where we can put

custom html content.

 added option userData in options array. Whit this we get user defined data from the response and
use it later. To use this an additional option userdata in xmlReader and jsonReader is added.
(thanks to Paul Tiseo). For more information refer to xml file and JSON Data

 added option postData. This array is passed directly to the url options - ajax request (thanks to
Paul Tiseo). Refer to API Methods for manipulating postData array.

 added scope for easy translation when the grid is used multiple times in the application. That
mean that the translation strings can be called only once and not every time when the grid is
constructed. The scope is $.jgrid.defaults To use this you need to simply do
$.extend($.jgrid.defaults,{ recordtext: "My record text", loadtext: "Process text",...}) only once.
Note that we can override all other parameters. There are other additions for form manipulation
module - $.jgrid.search - for the search method, $.jgrid.edit - for editing and adding method,
$.jgrid.del - for deleting method, $.jgrid.nav - for the navigator .

Introduction jqGrid

- 19 -

Introduction

This documentation is also available as a pdf file.

This documentation assumes that you are familiar with concepts like web server, database server and
scripting programming language. Using this documentation will be easier if you have already installed

this software.

Conventions

 Names of things -- modules, options, parameters or settings, etc. -- are in italics
 Values are shown in a different font: e.g., "change the value of the associated include from true

to false."
 Names of keys (e.g., Enter) appear in square brackets in the text, e.g., press [Enter]

 for readability, code samples are shown with spaces separating elements e.g., name: value; in
practice however, spaces are not significant and name : value, name:value and name :value are
treated all the same

A reminder: javascript is case-sensitive, so subGrid: true is not the same as subgrid: true

Errors and Omissions
It is almost inevitable that some errors will creep into this documentation; please report any you find to

the editor.

Suggestions for expanded or new topics, or contributions of examples are also very welcome.

Requirements

At the very least, you will need:

 jqGrid plugin,
 jQuery library, version 1.1.4 or later, and
 a web browser

To manipulate and represent local (static) data – i.e. array data, data stored in an xml file, or data
stored in a JSON file – that's all you need.

But the primary purpose of jqGrid is to manipulate and represent dynamic data over the web, and for
this you will also need

 a web server (e.g., IIS, Apache, Tomcat),
 a database backend (e.g., Postgre SQL, Oracle, MSSQL, MySQL), and
 a server-side scripting language (e.g., PHP, ASP)

http://www.secondpersonplural.ca/jqgriddocs/jqgriddocs.pdf

Introduction jqGrid

- 20 -

Do I need to Pay for jqGrid?

No. This package is free, distributed under GPL and MIT, so you don’t need to pay. Just follow the GPL
rules and everybody will be happy. I really was needing some way to contribute to the open source
community, and I hope this is just the beginning.

If you really love jqGrid and wish to make a donation, you can contact me (Tony) at tony@trirand.com.

Installation

First you need to download the jQuery JavaScript library. This library can be downloaded from
www.jquery.com. Please download the latest stable version of jQuery library and not a development

version.

You need to download the jqGrid plugin.

Create a directory on your web server, so that you can access it: http://myserver/mydir/, where mydir is
the name that you have created.

Place the jQuery library in that directory; unpack the jqGrid.zip in the same directory. You should have

this directory structure:

 jquery.js
 jquery.jqGrid.js

 js
o grid.base.js
o grid.celledit.js
o grid.common.js
o grid.custom.js

o grid.formedit.js
o grid.inlinedit.js
o grid.locale-en.js
o grid.postext.js

o grid.setcolumns.js
o grid.subgrid.js
o grid.tbltogrid.js
o grid.treegrid.js

o jqDnR.js
o jqModal.js
o jquery.tablednd.js
o jquery.fmatter.js

o json2.js
o JsonXml.js
o min

 grid.base-min.js
 grid.celledit-min.js

 grid.common-min.js
 grid.custom-min.js
 grid.formedit-min.js
 grid.inlinedit-min.js

 grid.locale-en-min.js
 grid.postext-min.js
 grid.setcolumns-min.js
 grid.subgrid-min.js

mailto:tony@trirand.com?subject=I%20love%20jqGrid
www.jquery.com
http://trirand.com/jqgrid/jqGrid.zip

Introduction jqGrid

- 21 -

 grid.tbltogrid-min.js

 grid.treegrid-min.js
 jquery.fmatter-min.js
 json2-min.js
 JsonXml-min.js

o packed
o packall

 themes
o basic (a folder containing several files related to this theme)

o coffee (another folder with theme files)
o green (jqGrid comes with the five themes shown here)
o sand (you can easily add your own)
o steel
o jqModal.css

where:

 jquery.js is the jQuery library,
 jquery.jqGrid.js is the main module for including different plugins depending on your needs.
 grid.base.js is the main plugin. Without this plugin, all other plugins are unusable.
 grid.celledit.js a plugin used if you want to have cell editing
 grid.common.js a required module containing code common to many areas of jqGrid
 grid.custom.js a plugin used if you want to use advanced grid methods
 grid.formedit.js a plugin used for form editing, including adding and deleting data.
 grid.inlinedit.js a plugin used if you want to have inline editing
 grid.locale-en.js a plugin used if you want to dynamically change the language.
 grid.postext.js a plugin (available separately) used to manipulate the post data array
 grid.setcolumns.js a plugin used if you want to allow users to choose which columns to show or

hide
 grid.subgrid.js a plugin used if you want to use subgrids
 grid.tbltogrid.js a plugin used if you want to convert html tables to a jqGrid
 grid.treegrid.js a plugin used if you want to use a tree grid
 jqModal.js a plugin used for form editing (modal dialogs)
 jqDnR.js a plugin used for form editing (drag and resize)
 jqQuery.TableDnD.js a plugin used for rearranging rows (drag and drop) in the grid
 grid.import.js a plugin used for importing and exporting grid configuration
 json2.js json utilities used in import/export module
 JsonXml.js xmljson utilities used in import/export module

 min the directory/folder containing the minified versions of the javascript files, suitable for
production

 packed the directory/folder containing all the modules in packed variant (named the same as
those in js), suitable for production use.

 packall the directory/folder containing a single file, grid.pack.js, which contains the entire suite of
jqGrid files without any language file, suitable for production use.

 themes the directory/folder containing the different styles for the grid.

If you want to use all of the features of jqGrid you do not need to do anything more.

If you want to use only some of the features or only the basic functions of jqGrid, you may want to edit
the jquery.jqGrid.js file and remove the files you will not be using. This file must also be edited if you

place the javascript files in other locations than those specified above. This file is simple and can be
easily configured.

// we make it simple as possible

Introduction jqGrid

- 22 -

function jqGridInclude()

{

 var pathtojsfiles = "js/"; // need to be ajusted

 // if you do not want some module to be included

 // set include to false.

 // by default all modules are included.

 var minver = false;

 var modules = [

 { include: true, incfile:'grid.locale-en.js',minfile: 'min/grid.locale-en-min.js'}, // jqGrid

translation

 { include: true, incfile:'grid.base.js',minfile: 'min/grid.base-min.js'}, // jqGrid base

 { include: true, incfile:'grid.common.js',minfile: 'min/grid.common-min.js' }, // jqGrid common for

editing

 { include: true, incfile:'grid.formedit.js',minfile: 'min/grid.formedit-min.js' }, // jqGrid Form

editing

 { include: true, incfile:'grid.inlinedit.js',minfile: 'min/grid.inlinedit-min.js' }, // jqGrid inline

editing

 { include: true, incfile:'grid.celledit.js',minfile: 'min/grid.celledit-min.js' }, // jqGrid cell

editing

 { include: true, incfile:'grid.subgrid.js',minfile: 'min/grid.subgrid-min.js'}, //jqGrid subgrid

 { include: true, incfile:'grid.treegrid.js',minfile: 'min/grid.treegrid-min.js'}, //jqGrid treegrid

 { include: true, incfile:'grid.custom.js',minfile: 'min/grid.custom-min.js'}, //jqGrid custom

 { include: true, incfile:'grid.postext.js',minfile: 'min/grid.postext-min.js'}, //jqGrid postext

 { include: true, incfile:'grid.tbltogrid.js',minfile: 'min/grid.tbltogrid-min.js'}, //jqGrid table to

grid function

 { include: true, incfile:'grid.setcolumns.js',minfile: 'min/grid.setcolumns-min.js'} //jqGrid

hide/show columns function

 { include: true, incfile:'grid.import.js',minfile: 'min/grid.import-min.js'}, //jqGrid import

 { include: true, incfile:'jquery.fmatter.js',minfile: 'min/jquery.fmatter-min.js'}, //jqGrid formatter

 { include: true, incfile:'json2.js',minfile: 'min/json2-min.js'}, //json utils

 { include: true, incfile:'JsonXml.js',minfile: 'min/JsonXml-min.js'} //xmljson utils

];

 for(var i=0;i<modules.length; i++)

 {

 if(modules[i].include === true) {

 if (minver !== true) IncludeJavaScript(pathtojsfiles+modules[i].incfile,CallMe);

 else IncludeJavaScript(pathtojsfiles+modules[i].minfile,CallMe);

 }

 }

 function IncludeJavaScript(jsFile,oCallback)

 {

 var oHead = document.getElementsByTagName('head')[0];

 var oScript = document.createElement('script');

 oScript.type = 'text/javascript';

 oScript.src = jsFile;

 oHead.appendChild(oScript);

 }

}

jqGridInclude();

If you have a different path to javascript files you must change the value of the variable pathtojsfiles
appropriately. This path is relative to your application (or the server application), not to jquery.jqGrid.js;
so if your path to jquery.jqGrid.js is "..scripts\", this will need to be "..\scripts\js\".

If you want to exclude some modules you simply change the value of the associated include from true to
false, in the modules array.

If you plan to use the form editing module you should include jqModal.js, jqDnR.js and jqModal.css files
in your html page.

Introduction jqGrid

- 23 -

Using Packed Versions

If we want to use the packed variant we need only to change the variable pathtojsfiles to point to this
folder. If the original pathtojsfiles is "js/", then for the packed version we change pathtojsfiles
to"js/packed/".

To use grid.pack.js in packall, we need first to load the appropriate language file and after that this file.
Or more simply, we can set the include property in the loader to false and add new two lines for the

language and the packed version.

How it Works

Understanding this will help you to work better with jqGrid and use the full capabilities of the plugin.

The first thing we must understand is that we have two major divisions:

 Server-side manipulation, and
 Client-side representation.

In other words, jqGrid is a component that helps you, in an easy way, to represent database information
on the client side using a server-side technology. Moreover it helps you to manipulate that data back into
the database.

What is server-side manipulation (SSM)? There are many definitions possible, but I try to explain it in
terms of jqGrid.

Basically SSM means the server handles the editing and not the user's browser. SSM isn’t something that
is visible within a web page. Everything is done on the server side using any common programming
language. Basically it’s a server-side command that tells the server to place a file or text within the page

once it is called from a user.

In terms of jqGrid this means that you should care about this: you must have a piece of code that deals
with information stored in the database using some scripting language and web server. Using this code

you should be able to return requested information back to the client (web browser). jqGrid uses Ajax
calls to retrieve the requested information and represent it to client using Java Script language.

Having the needed (requested) information, jqGrid constructs the representation (tabular data)

described by you in what is called the Column Model (colModel).

The constructed tabular data at the client side has:

 Caption layer
 Header layer
 Body layer
 Navigation layer

Introduction jqGrid

- 24 -

Caption layer contains common information for the represented data.

Header layer contains information about the columns: labels, width, etc.

Body layer is the data requested from the server and displayed according to the settings in the column
model.

Navigation layer contains additional information from the requested data and actions for requesting
little pieces of information – in the literature called paging. Note that the navigation layer can be placed

not only at bottom of the grid, but anywhere on the page. The Navigation layer is also the place for
adding buttons or links for editing, deleting, adding to and searching your grid data.

The minimum for the representing the data are Header layer and Body layer.

To allow freedom and flexibility, and often a better impression, jqGrid relies on CCS (Cascading Style
Sheets) to govern its appearance.

Tutorial: Creating Your First Grid jqGrid

- 25 -

Tutorial: Creating Your First Grid

For this tutorial, and as an example to refer to throughout this documentation, we’ll create a grid with
Invoice information.

First of all we need to decide what data we want to represent at the client. Let’s have the following:

 Invid – the invoice number,
 invdate – the date of the invoice,
 amount,
 tax,
 total (including tax), and
 note – additional information about the invoice.

The Data

We'll need a table with the following format. This example is based on MySQL; please create yours
however you would normally do it.
CREATE TABLE invheader (

 invid int(11) NOT NULL auto_increment,

 invdate date NOT NULL,

 client_id int(11) NOT NULL,

 amount decimal(10,2) NOT NULL default '0.00',

 tax decimal(10,2) NOT NULL default '0.00',

 total decimal(10,2) NOT NULL default '0.00',

 note char(100) default NULL,

 PRIMARY KEY (id)

);

Then, put some values into it.

The HTML

The html file looks like this:
<html>

<head>

<title>jqGrid Demo</title>

<link rel="stylesheet" type="text/css" media="screen" href="themes/basic/grid.css" />

<link rel="stylesheet" type="text/css" media="screen" href="themes/jqModal.css" />

<script src="jquery.js" type="text/javascript"></script>

<script src="jquery.jqGrid.js" type="text/javascript"></script>

<script src="js/jqModal.js" type="text/javascript"></script>

<script src="js/jqDnR.js" type="text/javascript"></script>

<script type="text/javascript">

jQuery(document).ready(function(){

 jQuery("#list").jqGrid({

 url:'example.php',

 datatype: 'xml',

 mtype: 'GET',

 colNames:['Inv No','Date', 'Amount','Tax','Total','Notes'],

 colModel :[

 {name:'invid', index:'invid', width:55},

 {name:'invdate', index:'invdate', width:90},

 {name:'amount', index:'amount', width:80, align:'right'},

 {name:'tax', index:'tax', width:80, align:'right'},

 {name:'total', index:'total', width:80, align:'right'},

Tutorial: Creating Your First Grid jqGrid

- 26 -

 {name:'note', index:'note', width:150, sortable:false}],

 pager: jQuery('#pager'),

 rowNum:10,

 rowList:[10,20,30],

 sortname: 'id',

 sortorder: "desc",

 viewrecords: true,

 imgpath: 'themes/basic/images',

 caption: 'My first grid'

 });

});

</script>

</head>

<body>

<table id="list" class="scroll"></table>

<div id="pager" class="scroll" style="text-align:center;"></div>

</body>

</html>

The assumption that makes the above work is that the saved file is in the directory where you placed the
jqGrid files. If it is not, you will need to change the pathing appropriately.

First, we need to include the files required to construct the grid. This is done between the <head> tags
in the html document.

<head>

<link rel="stylesheet" type="text/css" media="screen" href="themes/basic/grid.css" />

<script src="jquery.js" type="text/javascript"></script>

<script src="jquery.jqGrid.js" type="text/javascript"></script>

…

</head>

 The <link…/> tag loads the style sheet for jqGrid,
 The first <script ../> tag loads the jquery library,
 The second <script ../> tag loads the required jqGrid plugins,
 The third and fourth <script ../> tags load the additional modules required for some functions,

and
 The last script tag is where we write the commands needed to construct the grid. A detailed

description of this area appears below.

Between the <body> tags you define where you want to place the grid.

<body>

…

<table id="list" class="scroll"></table>

<div id="pager" class="scroll" style="text-align:center;"></div>

…

</body>

The definition of the grid is done via the html tag <table>. To make our life easy it is good idea to give
the table an id that is unique in this html document. The second step is to assign a class "scroll" so that
we can use the style definitions in the CSS provided with jqGrid.
Cellspacing, cellpadding and border attributes are added by jqGrid and shoudl not be included in the
definition of your table.

We want to use a paging mechanism too, so we define the navigation layer. This can be done with the
commonly-used <div> tag. Giving the class "scroll" of the navigator specifies that we want to use the
CSS provided with jqGrid. It is important to note that the navigation layer can be placed arbitrarily any

place in the html document. Normally, and in this case, it is under the grid.

We use the jQuery document.ready function to run our script at the appropriate time. For more
information on this, refer to the jQuery documentation.

Tutorial: Creating Your First Grid jqGrid

- 27 -

The syntax for constructing the grid is:

jQuery('#grid_selector').jqGrid(options)

where:

 grid_selector is the unique id of the grid table (list using our example above)
 jqGrid is the plugin, and
 options is an array, in our example several lines, of the information needed to construct the grid.

Let’s begin with the options array, which looks like this: (These options can appear in any order)

{

 url:'example.php',

 datatype: 'xml',

 mtype: 'GET',

 colNames:['Inv No','Date', 'Amount','Tax','Total','Notes'],

 colModel :[

 {name:'invid', index:'invid', width:55},

 {name:'invdate', index:'invdate', width:90},

 {name:'amount', index:'amount', width:80, align:'right'},

 {name:'tax', index:'tax', width:80, align:'right'},

 {name:'total', index:'total', width:80,align:'right'},

 {name:'note', index:'note', width:150, sortable:false}],

 pager: jQuery('#pager'),

 rowNum:10,

 rowList:[10,20,30],

 sortname: 'id',

 sortorder: 'desc',

 viewrecords: true,

 imgpath: 'themes/basic/images',

 caption: 'My first grid'

}

The settings and options used above are described here; listings of all settings and options can be found

in API Methods and colModel API.

Property Description

url tells us where to get the data. Typically this is a server-side function with a
connection to a database which returns the appropriate information to be filled
into the Body layer in the grid

datatype this tells jqGrid the type of information being returned so it can construct the
grid. In this case we tell the grid that we expect xml data to be returned from the
server, but other formats are possible. For a list of all available datatypes refer to

API Methods

mtype tells us how to make the ajax call: either 'GET' or 'POST'. In this case we will use
the GET method to retrieve data from the server

colNames an array in which we place the names of the columns. This is the text that

appears in the head of the grid (Header layer). The names are separated with
commas

colModel an array that describes the model of the columns. This is the most important part
of the grid. Here I explain only the options used above. For the complete list of

options see colModel API:
name

the name of the column. This name does not have to be the name from
database table, but later we will see how we can use this when we have

Tutorial: Creating Your First Grid jqGrid

- 28 -

different data formats
index

the name passed to the server on which to sort the data (note that we
could pass column numbers instead). Typically this is the name (or names)
from database -- this is server-side sorting, so what you pass depends on
what your server expects to receive

width
the width of the column, in pixels

align
the alignment of the column

sortable
specifies if the data in the grid can be sorted on this column; if false,
clicking on the header has no effect

pager defines that we want to use a pager bar to navigate through the records. This
must be a valid html element; in our example we gave the div the id of "pager",
but any name is acceptable. Note that the Navigation layer (the "pager" div) can
be positioned anywhere you want, determined by your html; in our example we

specified that the pager will appear after the Body layer.

rowNum sets how many records we want to view in the grid. This parameter is passed to
the url for use by the server routine retrieving the data

rowList an array to construct a select box element in the pager in which we can change

the number of the visible rows. When changed during the execution, this
parameter replaces the rowNum parameter that is passed to the url

sortname sets the initial sorting column. Can be a name or number. This parameter is
added to the url for use by the server routine

sortorder sets the sorting order. This parameter is added to the url

viewrecords defines whether we want to display the number of total records from the query in
the pager bar

imgpath the path to the images needed for the grid. The path should not end with '/'

caption sets the caption for the grid. If this parameter is not set the Caption layer will be
not visible

Having done this, we have now done half the work. The next step is to construct the server-side
manipulation -- in the file pointed to in the url parameter in the grid.

The Server-side File

jqGrid can construct a grid from data in any of several formats, but the default is xml data with the

following structure. Later we'll see how to use xml data in other structures and data in other formats.

Default xml Data Structure
<?xml version ="1.0" encoding="utf-8"?>

<rows>

 <page> </page>

 <total> </total>

 <records> </records>

 <row id = “unique_rowid”>

 <cell> cellcontent </cell>

 <cell> <![CDATA[cell content]]> </cell>

 …

 </row>

 <row id = “unique_rowid”>

 <cell> cellcontent </cell>

 <cell> <![CDATA[cell content]]> </cell>

Tutorial: Creating Your First Grid jqGrid

- 29 -

 …

 </row>

 …

</rows>

The tags used in this example are explained in the following table.

Tag Description

rows the root tag for the grid

page the number of the requested page

total the total pages of the query

records the total records from the query

row a particular row in the grid

cell the actual data. Note that CDATA can be used. This way we can add images, links and
check boxes.

The number of cell tags in each row must equal the number of cells defined in the colModel. In our
example, we defined six columns, so the number of cell tags in each row tag should be six.

Note the id attribute in the <row> tags. While this attribute can be omitted, it is a good practice to have
a unique id for every row. If this attribute is omitted, jqGrid has two ways of dealing with need for
unique ids:

1. if the property key in the colModel is set to true for a particular column, then jqGrid will assign
the value of this column to be the id of the row; otherwise,

2. jqGrid sets the row id based on the order of the row.

If you are using a content-free primary key to identify your data rows, then do not include this value
in the grid as a visible cell; instead, include it in the query and pass it as the row id attribute. It will
always be available for jqGrid and even jQuery operations but not be visible on the page.

Now it is time to construct our file.

PHP and MySQL

<?php

//include the information needed for the connection to MySQL data base server.

// we store here username, database and password

include("dbconfig.php");

// to the url parameter are added 4 parameters as described in colModel

// we should get these parameters to construct the needed query

// Since we specify in the options of the grid that we will use a GET method

// we should use the appropriate command to obtain the parameters.

// In our case this is $_GET. If we specify that we want to use post

// we should use $_POST. Maybe the better way is to use $_REQUEST, which

// contain both the GET and POST variables. For more information refer to php documentation.

// Get the requested page. By default grid sets this to 1.

$page = $_GET['page'];

// get how many rows we want to have into the grid - rowNum parameter in the grid

$limit = $_GET['rows'];

// get index row - i.e. user click to sort. At first time sortname parameter -

Tutorial: Creating Your First Grid jqGrid

- 30 -

// after that the index from colModel

$sidx = $_GET['sidx'];

// sorting order - at first time sortorder

$sord = $_GET['sord'];

// if we not pass at first time index use the first column for the index or what you want

if(!$sidx) $sidx =1;

// connect to the MySQL database server

$db = mysql_connect($dbhost, $dbuser, $dbpassword) or die("Connection Error: " . mysql_error());

// select the database

mysql_select_db($database) or die("Error connecting to db.");

// calculate the number of rows for the query. We need this for paging the result

$result = mysql_query("SELECT COUNT(*) AS count FROM invheader");

$row = mysql_fetch_array($result,MYSQL_ASSOC);

$count = $row['count'];

// calculate the total pages for the query

if($count > 0) {

 $total_pages = ceil($count/$limit);

} else {

 $total_pages = 0;

}

// if for some reasons the requested page is greater than the total

// set the requested page to total page

if ($page > $total_pages) $page=$total_pages;

// calculate the starting position of the rows

$start = $limit*$page - $limit;

// if for some reasons start position is negative set it to 0

// typical case is that the user type 0 for the requested page

if($start <0) $start = 0;

// the actual query for the grid data

$SQL = "SELECT invid, invdate, amount, tax,total, note FROM invheader ORDER BY $sidx $sord LIMIT $start ,

$limit";

$result = mysql_query($SQL) or die("Couldn't execute query.".mysql_error());

// we should set the appropriate header information

if (stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {

 header("Content-type: application/xhtml+xml;charset=utf-8");

} else {

 header("Content-type: text/xml;charset=utf-8");

}

echo "<?xml version='1.0' encoding='utf-8'?>";

echo "<rows>";

echo "<page>".$page."</page>";

echo "<total>".$total_pages."</total>";

echo "<records>".$count."</records>";

// be sure to put text data in CDATA

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

echo "<row id='". $row[invid]."'>";

 echo "<cell>". $row[invid]."</cell>";

 echo "<cell>". $row[invdate]."</cell>";

 echo "<cell>". $row[amount]."</cell>";

 echo "<cell>". $row[tax]."</cell>";

 echo "<cell>". $row[total]."</cell>";

 echo "<cell><![CDATA[". $row[note]."]]></cell>";

echo "</row>";

}

echo "</rows>";

?>

That is all. Save the file with name example.php and your first grid is done.

Tutorial: Creating Your First Grid jqGrid

- 31 -

COOP Example

COOP is inspirational simplicity with separation of the designer's presentation from the developer's logic.
The technology starts quickly with powerful prototyping and finishes stronger with preDOM coding and
clean versatile logic. The tip of the iceberg is how COOP integrates some of the greatest AJAX libraries

into a single framework.

For more information refer to http://www.coldfusioncommunity.org/group/coop

This example, coop_jqGridExample.cfm, is provided by Timothy Farrar.

<!--- First import your COOP tagLibraries. This example assumes that your share directory with the COOP

library is at the root of your web server. --->

<cfimport prefix="coop" tagLib="/share/tags/coop">

<cfimport prefix="icejQuery" tagLib="/share/tags/coop/jquery">

<!--- Set up your coop page. --->

<coop:coop>

<html>

 <head>

 <title>JQGrid Example</title>

 </head>

 <body>

 <!--- Your grid tag will only require an id attribute here. The other settings will be managed via the

coProcessor. --->

 <icejQuery:jqGrid id="myJQGrid"/>

 </body>

</html>

</coop:coop>

Next, this is the COProcessor, called coop_jqGridExample.cfc

<cfcomponent>

 <cffunction name="onPageStart">

 <cfscript>

 var _init = structNew();

 /*

 Here we set up the attributes for the grid Object

 The gridObject attribute is an object that contains the griData,

 and either self generates or allows you to set other things required

 by the jQGrid.

 The getDataMethod attribute is the method name that will be called from the browser

 to populate the grid with data.

 *//

 createOJQGrid();

 _init.myJQGrid.jqGridObject = variables.oJQGrid;

 _init.myJQGrid.getDataMethod="getData";

 return _init;

 </cfscript>

 </cffunction>

 <cffunction name="createOJQGrid" output="false">

 <!--- This function is where we create the jQGrid Object that is passed into the tag. --->

 <cfscript>

 if (NOT structKeyExists(variables,"ojQGrid")) {

 variables.oJqGrid = createObject("component","share.objects.coop.jquery.jqGridData");

 /* The gridObject's init method requires the following arguments:

 GridID - the ID of the grid you are setting up

 classPath - The classPath to the shareDirectory with a "." at the end.

 data - The data with which to populate the jQGrid

 *//

 variables.oJqGrid.init(gridID:"myJQGrid",classPath:"share.",data:getGalleries());

 }

 </cfscript>

 </cffunction>

 <cffunction name="getData" access="remote" output="true">

 <!---

 This is the method that is called to retrieve the data for the JQGrid.

http://www.coldfusioncommunity.org/group/coop

Tutorial: Creating Your First Grid jqGrid

- 32 -

 Note that the access level must be set to remote

 in order for it to be accessible from the browser

 --->

 <cfset var data =''>

 <cfset createOJQGrid()>

 <!---

 The data is obtained by caling the getData()

 method and passing it the grid ID and other

 arguments that the JQGrid plugin passes with a request

 --->

 <cfset data =

variables.oJQGrid.getData(gridID:'myJQGrid',page:arguments.page,sord:arguments.sord,sidx:arguments.sidx,rows:a

rguments.rows)>

 <cfcontent reset="true"><cfoutput>#data#</cfoutput>

 </cffunction>

 <cffunction name="getGalleries" output="true">

 <cfquery name="photoQuery" datasource="coop">

 SELECT *

 FROM PHOTOS

 </cfquery>

 <cfreturn photoQuery>

 </cffunction>

</cfcomponent>

Retrieving Data jqGrid

- 33 -

Retrieving Data

With the first release of jqGrid, the only possible way to obtain data was via xml as described in the
tutorial above. Later, many people requested the ability to obtain data via JSON, then with an array and
finally with 'real' names. After lot of work and with the help of the community we now have a wide range
of methods for obtaining data.

The related options (in options array) for manipulating different types of data are:

datatype: the possible options are - 'xml', 'json','clientSide' or 'local', 'xmlstring', 'jsonstring' and
'function (...)'

The default mapping for xml data is as follows:

xmlReader : {

 root: "rows",

 row: "row",

 page: "rows>page",

 total: "rows>total",

 records : "rows>records",

 repeatitems: true,

 cell: "cell",

 id: "[id]",

 subgrid: {

 root:"rows",

 row: "row",

 repeatitems: true,

 cell:"cell"

 }

};

If your server can provide data in this structure, you need to do nothing more; but if not, there is a way
(several ways) to handle the data you are given. See XML Data.

The default mapping for json data is as follows:

jsonReader : {

 root: "rows",

 page: "page",

 total: "total",

 records: "records",

 repeatitems: true,

 cell: "cell",

 id: "id",

 subgrid: {

 root:"rows",

 repeatitems: true,

 cell:"cell"

 }

}

In colModel, the related options are xmlmap for the description of an xml field, and jsonmap for the
description of a json field. For example:

colModel : [{name:'amount',..., xmlmap:'amt'...}...]

will cause jqGrid to search in the xml data for an 'amt' tag (when the repeatitems option is set to false).

XML Data

Retrieving Data jqGrid

- 34 -

As mentioned above, if we do not set the datatype and xmlReader parameter in the options array, the
grid expects xml data, and the structure of this data is as described in our example. But what if we do
not have the chance to manipulate the server response? The solution to this problem is xmlReader, again
with some additions in colModel. Here is a brief description of xmlReader.

Important note: the rules of accessing the element from xml are the same as those used in jQuery
library, i.e. CSS patterns. For more information refer to: http://www.w3.org/TR/REC-CSS2/selector.html

xmlReader : {

 root: "rows",

 row: "row",

 page: "rows>page",

 total: "rows>total",

 records : "rows>records",

 repeatitems: true,

 cell: "cell",

 id: "[id]",

 userdata: "userdata",

 subgrid: {

 root:"rows",

 row: "row",

 repeatitems: true,

 cell:"cell"

 }

}

The first setting here defines the root element. This describes where our data begins and all other loops
begin from this element. For example,

...

<invoices>

 <request>true</request>

 ...

 <result>

 <row>

 <cell>data1</cell>

 <cell>data2</cell>

 <cell>data3</cell>

 <cell>data4</cell>

 <cell>data5</cell>

 <cell>data6</cell>

 </row>

 ...

 </result>

</invoices>

If we set the root element to "result" all data will be processed from there. In this case, because our
rows are tagged <row> and our cells tagged <cell>, all that is needed is to set

xmlReader: { root:"result" }

The next element is the row element. This describes the information for particular row. Note that row
must be a child of the root element. Here, if the xml looks like this,

<invoices>

 <request>true</request>

 ...

 <result>

 <invoice>

 <cell>data1</cell>

 <cell>data2</cell>

 <cell>data3</cell>

 <cell>data4</cell>

http://www.w3.org/TR/REC-CSS2/selector.html

Retrieving Data jqGrid

- 35 -

 <cell>data5</cell>

 <cell>data6</cell>

 </invoice>

 ...

 </result>

</invoices>

the setting to properly interpret this data would be

xmlReader: { root:"result", row:"invoice" }

The page, total and record elements describe the information needed for the pager. These elements can
be, but do not have to be, a child of the root element. For example, to interpret this data,

<invoices>

 <request>true</request>

 ...

 <currentpage>1</currentpage>

 <totalpages>10</totalpages>

 <totalrecords>20</totalrecords>

 <result>

 <invoice>

 <cell>data1</cell>

 <cell>data2</cell>

 <cell>data3</cell>

 <cell>data4</cell>

 <cell>data5</cell>

 <cell>data6</cell>

 </invoice>

 ...

 </result>

</invoices>

the xmlReader will have to look like this:

xmlReader : {

 root:"result",

 row:"invoice",

 page:"invoices>currentpage",

 total:"invoices>totalpages",

 records:"invoices>totalrecords"

}

The repeatitems element tells jqGrid that the information for the data in the row is repeatable - i.e. the
elements have the same tag cell described in cell element. For this example,

<invoices>

 <request>true</request>

 ...

 <currentpage>1</currentpage>

 <totalpages>10</totalpages>

 <totalrecords>20</totalrecords>

 <result>

 <invoice>

 <invcell>data1</invcell>

 <invcell>data2</invcell>

 <invcell>data3</invcell>

 <invcell>data4</invcell>

 <invcell>data5</invcell>

 <invcell>data6</invcell>

 </invoice>

 ...

 </result>

</invoices>

Retrieving Data jqGrid

- 36 -

the xmlReader will look like this:

xmlReader : {

 root:"result",

 row:"invoice",

 page:"invoices>currentpage",

 total:"invoices>totalpages",

 records:"invoices>totalrecords",

 repeatitems:true,

 cell:"invcell"

}

Next is the id element. If repeatitems is set to true the id, if present in xml data, must be a attribute of
the row element. Lets look at the example:

<invoices>

 <request>true</request>

 ...

 <currentpage>1</currentpage>

 <totalpages>10</totalpages>

 <totalrecords>20</totalrecords>

 <result>

 <invoice asin='12345'>

 <invcell>data1</invcell>

 <invcell>data2</invcell>

 <invcell>data3</invcell>

 <invcell>data4</invcell>

 <invcell>data5</invcell>

 <invcell>data6</invcell>

 </invoice>

 ...

 </result>

</invoices>

In this case the xmlReader is:

xmlReader: {

 root:"result",

 row:"invoice",

 page:"invoices>currentpage",

 total:"invoices>totalpages",

 records:"invoices>totalrecords",

 repeatitems:true,

 cell:"invcell",

 id:"[asin]"

}

Let's suppose that the structure of the xml document returned from the server has the following format:

<invoices>

 <request>true</request>

 ...

 <currentpage>1</currentpage>

 <totalpages>10</totalpages>

 <totalrecords>20</totalrecords>

 <result>

 <invoice>

 <asin>12345</asin>

 <invoiceno>data1</invoiceno>

 <invoicedate>data2</invoicedate>

 <invoiceamount>data3</invoiceamount>

 <invoicetax>data4</invoicetax>

 <invoicetotal>data5</invoicetotal>

 <notes>data6</notes>

 </invoice>

 ...

Retrieving Data jqGrid

- 37 -

 </result>

</invoices>

where the <asin> tag describes the unique id and this should be set as the row id in the grid and not
displayed in the grid. Following the rules we can construct the following:

xmlReader: {

 root:"result",

 row:"invoice",

 page:"invoices>currentpage",

 total:"invoices>totalpages",

 records:"invoices>totalrecords",

 repeatitems:false,

 id:"asin"

}

and our colModel from the example should look like this:

colModel :[

 {name:'invid', index:'invid', width:55, xmlmap:"invoiceno"},

 {name:'invdate', index:'invdate', width:90, xmlmap:"invoicedate"},

 {name:'amount', index:'amount', width:80, align:'right', xmlmap:"invoiceamount"},

 {name:'tax', index:'tax', width:80, align:'right', xmlmap:"invoicetax"},

 {name:'total', index:'total', width:80, align:'right', xmlmap:"invoicetotal"},

 {name:'note', index:'note', width:150, sortable:false, xmlmap:"notes"}

],

We can use another trick. If the names in colModel are not important for you, you can do the following.

colModel :[

 { name:"invoiceno", index:'invid', width:55},

 { name:"invoicedate", index:'invdate', width:90},

 { name:"invoiceamount", index:'amount', width:80, align:'right'},

 { name:"invoicetax", index:'tax', width:80, align:'right'},

 { name:"invoicetotal", index:'total', width:80, align:'right'},

 { name:"notes", index:'note', width:150, sortable:false}

],

In other words, jqGrid first looks to see if there is an xmlmap option available; if this option is not

available the name is used as the xmlmap. But all of this is true only if the repeatitems element in
xmlReader is set to false.

The subgrid option is included in several of the xmlReader examples above. The principles in constructing

the rules for this data are the same as those described above. More details about subgrids can be found
in the section on Subgrids.

XML String

The xmlstring option has similar features to the xml option. The only difference is that the data is passed
as string. In this case we need to have a valid xml data string. To do that we can use a datastr option.

This example shows how to do that.
<script>

var mystr =

"<?xml version='1.0' encoding='utf-8'?>

<invoices>

 <rows>

 <row>

 <cell>data1</cell>

 <cell>data2</cell>

 <cell>data3</cell>

 <cell>data4</cell>

Retrieving Data jqGrid

- 38 -

 <cell>data5</cell>

 <cell>data6</cell>

 </row>

 </rows>

</invoices>";

jQuery(document).ready(function(){

 jQuery("#list").jqGrid({

 datatype: 'xmlstring',

 datastr : mystr,

 colNames:['Inv No','Date', 'Amount','Tax','Total','Notes'],

 colModel :[

 {name:'invid', index:'invid', width:55, sorttype:'int'},

 {name:'invdate', index:'invdate', width:90, sorttype:'date', datefmt:'Y-m-d'},

 {name:'amount', index:'amount', width:80, align:'right', sorttype:'float'},

 {name:'tax', index:'tax', width:80, align:'right', sorttype:'float'},

 {name:'total', index:'total', width:80, align:'right', sorttype:'float'},

 {name:'note', index:'note', width:150, sortable:false}],

 pager: jQuery('#pager'),

 rowNum:10,

 viewrecords: true,

 imgpath: 'themes/basic/images',

 caption: 'My first grid'

 });

});

</script>

As you can see, this example introduces another option in colModel: sorttype. This option describes how

a particular column is to be sorted, because when using xmlstring as the source for the grid, jqGrid uses
client-side sorting.

JSON Data

JSON data is handled in a fashion very similar to that of xml data. What is important is that the definition
of the jsonReader matches the data being received

datatype: json, (or jsonstring)

The default definition of the jsonreader is as follows:

jsonReader : {

 root: "rows",

 page: "page",

 total: "total",

 records: "records",

 repeatitems: true,

 cell: "cell",

 id: "id",

 userdata: "userdata",

 subgrid: {root:"rows",

 repeatitems: true,

 cell:"cell"

 }

}

datastr:

If the parameter datatype is 'json', jqGrid expects the following default format for json data.

{

 total: "xxx",

 page: "yyy",

 records: "zzz",

 rows : [

 {id:"1", cell:["cell11", "cell12", "cell13"]},

 {id:"2", cell:["cell21", "cell22", "cell23"]},

Retrieving Data jqGrid

- 39 -

 ...

]

}

The tags used in this example are described in the following table:

Tag Description

total total pages for the query

page current page of the query

records total number of records for the query

rows an array that contains the actual data

id the unique id of the row

cell an array that contains the data for a row

In this case, the number of the elements in the cell array should equal the number of elements in
colModel.

Let's consider our example in PHP and MySQL with JSON data. In this case I assume that the json
service is enabled in PHP.

<?php

include("dbconfig.php");

$page = $_REQUEST['page']; // get the requested page

$limit = $_REQUEST['rows']; // get how many rows we want to have into the grid

$sidx = $_REQUEST['sidx']; // get index row - i.e. user click to sort

$sord = $_REQUEST['sord']; // get the direction

if(!$sidx) $sidx =1;

// connect to the database

$db = mysql_connect($dbhost, $dbuser, $dbpassword) or die("Connection Error: " . mysql_error());

mysql_select_db($database) or die("Error conecting to db.");

$result = mysql_query("SELECT COUNT(*) AS count FROM invheader a, clients b WHERE

a.client_id=b.client_id".$wh);

$row = mysql_fetch_array($result,MYSQL_ASSOC);

$count = $row['count'];

if($count >0) {

 $total_pages = ceil($count/$limit);

} else {

 $total_pages = 0;

}

if ($page > $total_pages) $page=$total_pages;

$start = $limit*$page - $limit; // do not put $limit*($page - 1)

if ($start<0) $start = 0;

$SQL = "SELECT invid,invdate,amount,tax,total,note FROM invheader ORDER BY ".$sidx." ".$sord. " LIMIT

".$start." , ".$limit;

$result = mysql_query($SQL) or die("Could not execute query.".mysql_error());

// Construct the json data

$response->page = $page; // current page

$response->total = $total_pages; // total pages

$response->records = $count; // total records

$i=0;

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 $response->rows[$i]['id']=$row[invid]; //id

 $response-

>rows[$i]['cell']=array($row[invid],$row[invdate],$row[amount],$row[tax],$row[total],$row[note]);

 $i++;

}

echo json_encode($response);

?>

The structure of the jsonReader is very similar to the xmlReader. The only missing part is the row
element which is not needed for JSON data. Let's begin our walk through the jsonReader.

Retrieving Data jqGrid

- 40 -

The first element is a root element. This element describes where our data begins. In other words, this

points to the array that contains the data. If we set

jsonReader: { root:"invdata" }

then the returned string should be

{

 total: "xxx",

 page: "yyy",

 records: "zzz",

 invdata: [

 {id:"1", cell:["cell11", "cell12", "cell13"]},

 {id:"2", cell:["cell21", "cell22", "cell23"]}

]

}

The page, total and record elements describe the information needed for the pager. For example, if the
jsonReader is set as follows,

jsonReader:{

 root: "invdata",

 page: "currpage"

 total: "totalpages"

 records: "totalrecords"

}

then the data should be

{

 totalpages: "xxx",

 currpage: "yyy",

 totalrecords: "zzz",

 invdata: [

 {id:"1", cell:["cell11", "cell12", "cell13"]},

 {id:"2", cell:["cell21", "cell22", "cell23"]}

]

}

The cell element describes the array which contains the data for the row.

jsonReader:{

 root: "invdata",

 page: "currpage"

 total: "totalpages"

 records: "totalrecords",

 cell: "invrow"

}

The data to match this description would be

{

 totalpages: "xxx",

 currpage: "yyy",

 totalrecords: "zzz",

 invdata : [

 {id:"1", invrow:["cell11", "cell12", "cell13"]},

 {id:"2", invrow:["cell21", "cell22", "cell23"]}

]

}

The id element descibes the unique id for the row

Retrieving Data jqGrid

- 41 -

jsonReader:{

 root: "invdata",

 page: "currpage"

 total: "totalpages"

 records: "totalrecords",

 cell: "invrow",

 id: "invid"

}

The data for this description is:

{

 totalpages: "xxx",

 currpage: "yyy",

 totalrecords: "zzz",

 invdata : [

 {invid:"1", invrow:["cell11", "cell12", "cell13"]},

 {invid:"2", invrow:["cell21", "cell22", "cell23"]}

]

}

It is possible to set the cell element to an empty string. And, it is possible to set the id as number. Here
is an example of these possibilities:

jsonReader:{

 root: "invdata",

 page: "currpage"

 total: "totalpages"

 records: "totalrecords",

 cell: "",

 id: "0"

}

In this case the id is the first element from the row data

{

 totalpages: "xxx",

 currpage: "yyy",

 totalrecords: "zzz",

 invdata: [

 {"1", "cell11", "cell12", "cell13"},

 {"2", "cell21", "cell22", "cell23"}

]

}

The repeatitems element tells jqGrid that the information for the data in the row is repeatable - i.e. the
elements have the same tag cell described in cell element. Setting this option to false instructs jqGrid to
search elements in the json data by name. This is the name from colModel or the name described with
the jsonmap option in colModel.

Here is an example:

jsonReader:{

 root: "invdata",

 page: "currpage"

 total: "totalpages"

 records: "totalrecords",

 repeatitems: false,

 id: "0"

}

The resulting data in our example should be:

{

 totalpages: "xxx",

Retrieving Data jqGrid

- 42 -

 currpage: "yyy",

 totalrecords: "zzz",

 invdata: [

 {invid:"1",invdate:"cell11", amount:"cell12", tax:"cell13", total:"1234", note:"somenote" },

 {invid:"2",invdate:"cell21", amount:"cell22", tax:"cell23", total:"2345", note:"some note" }

]

}

The id element in this case is 'invid'.

A very useful feature here is that there is no need to include all the data that is represented in colModel.

Since we make a search by name, the order does not need to match the order in colModel. Hence the
following string will be correctly interpreted in jqGrid.

{

 totalpages: "xxx",

 currpage: "yyy",

 totalrecords: "zzz",

 invdata: [

 {invid:"1",invdate:"cell11", note:"somenote" },

 {invid:"2", amount:"cell22", tax:"cell23", total:"2345" }

]

}

JSON String

The jsonstring option has the same features as json. The only difference is that the data is passed as

string. In this case we need to have a valid json data string. To do that we can use a datastr option. See

the xmlstring example.

With Named Values

When using json data with named values (i.e the repeatitems option is false) we can use so named dot
notation and index notation.

For example, our colModel definition might be as follows:

colModel:[

 {name:'name',label:'Name', width:150,editable: true},

 {name:'id',width:50, sorttype:"int", editable: true,formatter:strongFmatter},

 {name:'email',label:'Email', width:150,editable: true,formatter:'email'},

 {name:'stock',label:'Stock', width:60, align:"center", editable:

true,formatter:'checkbox',edittype:"checkbox"},

 {name:'item.price',label:'Price', width:100, align:"right", editable: true,formatter:'currency'},

 {name:'item.weight',label:'Weight',width:60, align:"right", editable: true,formatter:'number'},

 {name:'ship',label:'Ship Via',width:90, editable: true,formatter:'select', edittype:"select",

editoptions:{value:"2:FedEx;1:InTime;3:TNT;4:ARK;5:ARAMEX"}},

 {name:'note',label:'Notes', width:100, sortable:false,editable: true,edittype:"textarea",

editoptions:{rows:"2",cols:"20"}}

]

Note the elements defined as name:'item.price' and name:'item.weight'

Then our data:

{"page":"1","total":2,"records":"13",

"rows":[

{id:"12345",name:"Desktop Computers",email:"josh@josh.com",item:{price:"1000.72",

weight:"1.22"},note:"note",stock:"0",ship:"1"},

Retrieving Data jqGrid

- 43 -

{id:"23456",name:"<var>laptop</var>",note:"Long text ",stock:"yes",item:{price:"56.72",

weight:"1.22"},ship:"2"},

{id:"34567",name:"LCD Monitor",note:"note3",stock:"true",item:{price:"99999.72", weight:"1.22"},ship:"3"},

{id:"45678",name:"Speakers",note:"note",stock:"false",ship:"4"}

]

}

Note how item is defined. This data will be intelligently interpreted from the grid.

Array Data

Despite the fact that the primary goal of jqGrid is to represent dynamic data returned from a database,
jqGrid includes a wide range of methods to manipulate data at client side: Array data.

Related options in options array: datataype
Related options in colModel: sorttype, datefmt
Related methods : getRowData, delRowData, setRowData, addRowData

If we have defined a pager for grid with client side data, the buttons in pager are automatically disabled.
In other words, the current release of grid does not support client side paging.

First we must instruct jqGrid that the data that will be present is at client side. This is done with the

option datatype. To use this we must set

datatype : "clientSide"

The other option that can be used is "local" i.e. datatype: "local" These are the same.

Having this it is a good idea to set the sorttypes for the columns. If the sorttype is not set the default
sorttype is "text". Let's consider our example in terms of array data.

<script>

jQuery(document).ready(function(){

 jQuery("#list").jqGrid({

 datatype: 'clientSide',

 colNames:['Inv No','Date', 'Amount','Tax','Total','Notes'],

 colModel :[

 {name:'invid',index:'invid', width:55, sorttype:'int'},

 {name:'invdate',index:'invdate', width:90, sorttype:'date', datefmt:'Y-m-d'},

 {name:'amount',index:'amount', width:80, align:'right',sorttype:'float'},

 {name:'tax',index:'tax', width:80, align:'right',sorttype:'float'},

 {name:'total',index:'total', width:80,align:'right',sorttype:'float'},

 {name:'note',index:'note', width:150, sortable:false}],

 pager: jQuery('#pager'),

 rowNum:10,

 viewrecords: true,

 imgpath: 'themes/basic/images',

 caption: 'My first grid'

});

});

</script>

You can see the new setting here: datatype, sortype and datefmt.

The possible values for the sorttype are:
int - the data is interpreted as integer,
float - the data is interpreted as decimal number
date - the data is interpreted as data
text - the data is interpreted as text

Retrieving Data jqGrid

- 44 -

We need this information for the appropriate sorting of these types. Additionally for the sorttype date we
must known the format of the data that will be present in the grid. The default format is a ISO format 'Y-
m-d'. The description of the date format is like a PHP way. For more information refer to php.net.
The limitation of date format is that the date can be represented only as numbers and not as number

and string. By example if the date is represented as '03-Mar-2008' the sorting will be not correct.

Let's add some data. This can be done with the method addRowData.
The parameters to this method are:

addRowData(rowid, data, position, srcrowid)

where:

 rowid: this value will be set as the id of the row
 data: is the array of data in pair name:value, where the name is the name from colModel
 position: specifies where to add the data - first, last, before or after. "first" adds the new row at

the top of the grid; "last" adds the data in the last position; "before" and "after" refer to the row
identified in srcrowid.

 srcrowid: the id of a row which the new data is to be added either "before" or "after"

<script>

...

myfirstrow = {

invid:"1",

invdate:"2007-10-01",

note:"note",

amount:"200.00",

tax:"10.00",

total:"210.00"}

jQuery("#list").addRowData("1", myfirstrow);

...

</script>

With this line we have added our first row. It is important to note that the order of the name-value pairs
is arbitrary. Moreover, we can set a single name-value pair Like this.

jQuery("#list").addRowData("2", {amount:"300.00"});

with this line we have added second row with only a value in the amount column.

To get data from the particular row we should use getRowData method:

getRowData(rowid),

where rowid is the id for the row which values we will obtain

jQuery("#list").getRowData("1");

will return array of name-value pairs - the result is
{invid:"1",

invdate:"2007-10-01",

note:"note",

amount:"200.00",

tax:"10.00",

total:"210.00"}

To delete a row we should use delRowData method:

Retrieving Data jqGrid

- 45 -

delRowData(rowid)

where rowid is the id of the row that can be deleted.

jQuery("#list").delRowData("2");

will delete the row with the id = 2.
This method returns true if the deletion is successfull, false othervise

To change all or part of the values in a given row, we can use a setRowData method.

setRowData(rowid, data)

where
rowid is the id of the row which values will be changed
data is a array of data that contain the new values. The structure of array is in type
name:value.

jQuery("#list").setRowData("1", { tax:"5", total:"205" })

will change the values tax and total of row with id = 1.

The method returns true if update is successful, otherwise false.

Function

This option does not really define the datatype at all, but rather how to handle the data that is provided
by the server (which would still come as either xml or json data). The functions defined as a Datatype
should (or can) call addXMLData or addJSONData once the data has been received.

Calling Convention:

datatype : function(postdata) {

// do something here

}

Datatype functions are supplied with a single object containing the request information (parameter

postdata), which normally would have been transformed into GET or POST arguments. This object is
compatible with the data: option supplied to the jQuery $.ajax function.

Example:

jQuery("#"+gridid).jqGrid({

...

datatype : function(postdata) {

 jQuery.ajax({

 url:'server.php',

 data:postdata,

 dataType:"xml",

 complete: function(xmldata,stat){

 if(stat=="success") {

 var thegrid = jQuery("#"+gridid")[0];

 thegrid.addXmlData(xmldata.responseXML);

 }

 }

 });

 },

...

Retrieving Data jqGrid

- 46 -

});

User Data

In some cases we need to have custom data returned from the request that is not automatically
displayed by jqGrid, that we use either in a later process or to display additional information somewhere
in the html page or associated with the grid. To do that a userdata tag can be used.
xmlReader: {userdata: "userdata",... }

In the data received from the server, this could be structured as follows (in xml):

<invoices>

 <request>true</request>

 <userdata name="totalinvoice"> 240.00 </userdata>

 <userdata name="tax"> 40.00</userdata>

 ...

 <result>

 <row>

 <cell>data1</cell>

 <cell>data2</cell>

 <cell>data3</cell>

 <cell>data4</cell>

 <cell>data5</cell>

 <cell>data6</cell>

 </row>

 ...

 </result>

</invoices>

If using json data, the definition might look like this:

jsonReader : {

...

userdata: "userdata",

...

}

and the data received, like this:

{

 total: "xxx",

 page: "yyy",

 records: "zzz",

 userdata: {totalinvoice:240.00, tax:40.00},

 rows : [

 {id:"1", cell:["cell11", "cell12", "cell13"]},

 {id:"2", cell:["cell21", "cell22", "cell23"]},

 ...

]

}

When this data has been received, this information is stored in the userData array of the options array.
Whichever format the data comes in, in this case we would have:

userData = {totalinvoice:240.00, tax:40.00}

The data can be accessed two ways.

1. Using getReturnedData (provided by Paul Tiseo): this method directly returns the userData array

jQuery("grid_id").getReturnedData()

Retrieving Data jqGrid

- 47 -

2. Using a getGridParam method. To do that we need to request this data:

jQuery("grid_id").getGridParam('userData')

Both methods return the same array.

Basic Grids jqGrid

- 48 -

Basic Grids

An instance of jqGrid is a javascript object, with properties, events and methods. Properties may be
strings, numbers, arrays, boolean values or even other objects.

Calling Convention:

jQuery("#grid_id").jqGrid(properties);

Where:

 grid_id is the id of the <table> element defined separately in your html and used as the name of
your grid.

 properties is an array of settings in name: value pairs format. Some of these settings are values,

some are functions to be performed on an event. Some of these settings are optional while others
must be present for jqGrid to work.

An example, taken from the tutorial:

jQuery("#list").jqGrid({

 url:'example.php',

 datatype: 'xml',

 mtype: 'GET',

 colNames:['Inv No','Date', 'Amount','Tax','Total','Notes'],

 colModel :[

 {name:'invid', index:'invid', width:55},

 {name:'invdate', index:'invdate', width:90},

 {name:'amount', index:'amount', width:80, align:'right'},

 {name:'tax', index:'tax', width:80, align:'right'},

 {name:'total', index:'total', width:80, align:'right'},

 {name:'note', index:'note', width:150, sortable:false}],

 pager: jQuery('#pager'),

 rowNum:10,

 rowList:[10,20,30],

 sortname: 'id',

 sortorder: "desc",

 viewrecords: true,

 imgpath: 'themes/basic/images',

 caption: 'My first grid'

 });

When the grid is created, normally several properties are set in the same statement (although these
properties can be individually overridden later): see Properties

Events raised by the grid, which offer opportunities to perform additional actions, are described in
Events.

The grid also offers several methods for getting or setting properties or data: see Methods

A key property of the grid is the column model (colModel) that defines the contents of the grid: colModel
Properties

Additional properties, events and methods of the basic grid, not described in this section, are used to
create and manage the three special types of grids: multiselect grids, subGrids and treeGrids. Please
refer to those topics for more details.

Basic Grids jqGrid

- 49 -

Properties

The available properties are listed here, in alphabetic order. Some have more details described

elsewhere, available by clicking on the link provided.

Property Type Description Default

altRows boolean Set a zebra-striped grid true

caption string Defines the Caption layer for the grid. This caption appear
above the Header layer. If the string is empty the caption
does not appear.

empty string

cellEdit boolean Enables (disables) cell editing. See Cell Editing for more
details

true

cellsubmit string Determines where the contents of the cell are saved:
'remote' or 'clientArray'. See Cell Editing for more details

'remote'

cellurl string the url where the cell is to be saved. See Cell Editing for
more details

null

colModel array Array which describes the parameters of the columns. For
a full description of all valid values see colModel API.

empty array

colNames array Array which describes the column labels in the grid empty array

datastr string The string of data when datatype parameter is set to
xmlstring or jsonstring

null

datatype string Defines what type of information to expect to represent
data in the grid. Valid options are xml - we expect xml
data; xmlstring - we expect xml data as string; json - we
expect JSON data; jsonstring - we expect JSON data as

string; clientSide - we expect data defined at client side
(array data)

xml

editurl string Defines the url for inline and form editing. null

ExpandColumn string indicates which column (name from colModel) should be

used to expand the tree grid. If not set the first one is
used. Valid only when treeGrid option is set to true.

nullr>

forceFit boolean If set to true, and resizing the width of a column, the
adjacent column (to the right) will resize so that the
overall grid width is maintained (e.g., reducing the width
of column 2 by 30px will increase the size of column 3 by
30px). In this case there is no horizontal scrolbar. Note:
this option is not compatible with shrinkToFit option - i.e
if shrinkToFit is set to false, forceFit is ignored.

false

gridstate string Determines the current state of the grid (i.e. when used
with hiddengrid, hidegrid and caption options). Can have
either of two states: 'visible' or 'hidden'

visible

hiddengrid boolean If set to true the grid initially is hidden. The data is not
loaded (no request is sent) and only the caption layer is
shown. When the show/hide button is clicked the first
time to show grid, the request is sent to the server, the
data is loaded, and grid is shown. From this point we
have a regular grid. This option has effect only if the
caption property is not empty and the hidegrid property
(see below) is set to true.

false

Basic Grids jqGrid

- 50 -

hidegrid boolean Enables or disables the show/hide grid button, which
appears on the right side of the Caption layer. Takes
effect only if the caption property is not an empty string.

true

height string The height of the grid. Can be set as percentage or any
valid measured value

150px

imgpath string Defines the path to the images that are used in the grid.
Set this option without / at end

empty string

jsonReader array Array which describes the structure of the expected json

data. For a full description and default setting, see JSON
Data

loadonce boolean If this flag is set to true, the grid loads the data from the
server only once (using the appropriate datatype). After
the first request the datatype parameter is automatically
changed to clientSide and all further manipulations are
done on the client side. The functions of the pager (if
present) are disabled.

false

loadtext string The text which appear when requesting and sorting data Loading...

loadui string This option controls what to do when an ajax operation is
in progress.

 disable - disables the jqGrid progress indicator.
This way you can use your own indicator.

 enable (default) - enables the red "Loading"
message in the upper left of the grid.

 block - enables the progress indicator using the
characteristics you have specified in the css for
div.loadingui and blocks all actions in the grid until
the ajax request is finished. Note that this disables

paging, sorting and all actions on toolbar, if any.

mtype string Defines the type of request to make ("POST" or "GET") GET

multikey string This parameter have sense only multiselect option is set
to true. Defines the key which will be pressed when we
make multiselection. The possible values are: shiftKey -
the user should press Shift Key altKey - the user should
press Alt Key ctrlKey - the user should press Ctrl Key

empty string

multiboxonly boolean This option works only when multiselect = true. When
multiselect is set to true, clicking anywhere on a row
selects that row; when multiboxonly is also set to true,
the row is selected only when the checkbox is clicked

(Yahoo style).

false

multiselect boolean If this flag is set to true a multi selection of rows is
enabled. A new column at left side is added. Can be used

with any datatype option.

false

prmnames array Customizes names of the fields sent to the server on a
Post: default values for these fields are "page", "rows",
"sidx", and "sord". For example, with this setting, you can

change the sort order element from "sidx" to "mysort":
prmNames: {sort: "mysort"}
The string that will be posted to the server will then be
myurl.php?page=1&rows=10&mysort=myindex&sord=asc

none

Basic Grids jqGrid

- 51 -

rather than
myurl.php?page=1&rows=10&sidx=myindex&sord=asc

postData array This array is passed directly to the url. This is associative
array and can be used this way: {name1:value1...}. See
API methods for manipulation.

empty array

resizeclass string Assigns a class to columns that are resizable so that we
can show a resize handle only for ones that are resizable

grid_resize

scroll boolean Creates dynamic scrolling grids. When enabled, the pager

elements are disabled and we can use the vertical
scrollbar to load data. This option currently should be
used carefully on big data sets, since I have not
developed an intelligent swapper, which means that all

the data is loaded and a lot of memory will be used if the
dataset is large. You must be sure to have a initial vertical
scroll in grid, i.e. the height should not be set to auto.

false

scrollrows boolean When enabled, selecting a row with setSelection scrolls
the grid so that the selected row is visible. This is
especially useful when we have a verticall scrolling grid
and we use form editing with navigation buttons (next or
previous row). On navigating to a hidden row, the grid
scrolls so the selected row becomes visible.

false

sortclass string the class to be applied to the currently sorted column, i.e.
applied to the th element

grid_sort

shrinkToFit boolean This option describes the type of calculation of the initial
width of each column against with the width of the grid. If
the value is true and the value in width option is set then:
Every column width is scaled according to the defined
option width. Example: if we define two columns with a
width of 80 and 120 pixels, but want the grid to have a
300 pixels - then the columns are recalculated as follow:
1- column = 300(new width)/200(sum of all
width)*80(column width) = 120 and 2 column =
300/200*120 = 180. The grid width is 300px. If the value
is false and the value in width option is set then: The
width of the grid is the width set in option. The column
width are not recalculated and have the values defined in
colModel.

true

sortascimg,
sortdescimg

string Links to image url which are used when the user sort a
column

sort_asc.gif,
sort_desc.gif

sortname string The initial sorting name when we use datatypes xml or
json (data returned from server)

none (empty
string)

sortorder string The initial sorting order when we use datatypes xml or
json (data returned from server)

asc

toolbar array This option defines the toolbar of the grid. This is array

with two values in which the first value enables the
toolbar and the second defines the position relative to
body Layer. Possible values "top" or "bottom"

[false,"top"]

treeGrid boolean Enables (disables) the tree grid format. For more details

see Tree Grid

false

tree_root_level numeric Determines the level where the root element begins when
treeGrid is enabled

0

Basic Grids jqGrid

- 52 -

url string The url of the file that holds the request null

userData array This array contain custom information from the request.
Can be used at any time.

empty array

width number If this option is not set, the width of the grid is a sum of

the widths of the columns defined in the colModel (in
pixels). If this option is set, the initial width of each
column is set according to the value of shrinkToFit option.

none

xmlReader array Array which describes the structure of the expected xml

data. For a full description refer to Data Types.

{

 root: "rows",
 row: "row",
 page:
"rows>page",

 total:
"rows>total",
 records :
"rows>records",
 repeatitems:

true,
 cell: "cell",
 id: "[id]",
 subgrid: {

 root:"rows",
 row: "row",
 repeatitems:
true,

 cell:"cell"
 }
}

$.jgrid.default array This array is used to define a grid option common to all
jqGrids in the application. Typically, this is called once to
set the default for one or more grid parameters -- any
parameter can be changed. Typical implementation;
$.extend($.jgrid.defaults,{rowNum:10})

empty array

colModel Properties

The colModel property defines the individual grid columns as an array of properties.
Syntax:
colModel: [

 {name:'name1', index:'index1'...},

 {...},

 ...

]

The available colModel properties are listed here, in alphabetic order. All of these properties are values,
there are no events or methods associated with the colModel. The only required property is name.

Basic Grids jqGrid

- 53 -

Property Type Description Default

align string Defines the alignment of the cell in the Body layer,
not in header cell. Possible values: left, center, right.

left

datefmt string Governs format of sorttype:date and editrules
{date:true} fields. Determines the expected date
format for that column. Uses a PHP-like date

formatting. Currently "/", "-", and "." are supported
as date separators. Valid formats are:

 y,Y,yyyy for four digits year

 YY, yy for two digits year
 m,mm for months
 d,dd for days

ISO Date (Y-m-d)

editable boolean Defines if the field is editable. This option is used in
inline and form modules.

false

editoptions array Array of allowed options (attributes) for edittype
option

empty array

editrules array editrules: {edithidden:true(false),
required:true(false), number:true(false),
minValue:val, maxValue:val, email:true(false),

date:true(false)}

 edithidden: if true, fields hidden in the grid
are included as editable in form editing when

add or edit methods are called.
 searchhidden: if true, fields hidden in the grid

are included in the search form.
 required: if true the value will be checked

and, if it is empty, an error message will be

displayed.
 number: if true the value will be checked to

be sure it is a number and, if it is not, an
error message will be displayed.

 i nteger: if true the value will be checked to
be sure it is an integer and, if it is not, an
error message will be displayed.

 minValue: if set to a valid number, the value

will be checked and if it is less than the
minValue, an error message will be displayed.

 maxValue: the same as minValue but the
value will be checked to be sure it is not

greater than the maxValue.
 email: if true, the value will be checked to

ensure it conforms to a valid e-mail format
(not that the email address exists) and, if it
does not, an error message will be displayed.

 date: if set to true, the format of the field is
governed by the setting of the datefmt

empty array

Basic Grids jqGrid

- 54 -

parameter

When a field is not required, the validation rules do
not fire and so do not raise an alert for missing data.

For example,
colModel: [
...
{...editrules:{required:false, number:true..}...}

...
]
In this case, if no data is provided by the user (it is
left blank) the alert message does not appear - i.e.

this is considered to be valid input.

edittype string Defines the edit type for inline and form editing
Possible values: text, textarea, select, checkbox,
password

See also Inline editing and form editing

text

formatoptions array Format options can be defined for particular columns,
overwriting the defaults from the language file. See
formatter for more details.

none

formatter string The predefined types or custom function name that
controls the format of this field. See formatter for
more details.

none

hidedlg boolean If set to true this column will not appear in the modal
dialog where users can choose which columns to
show or hide. See Show/Hide Columns.

false

hidden boolean Defines if this column is hidden at initialization. false

index string Set the index name when sorting. Passed as sidx
parameter.

the order of cell

jsonmap string Defines the json mapping for the column in the
incoming json string.

none

key boolean In case if there is no id from server, this can be set
as as id for the unique row id. Only one column can
have this property. If there are more than one key
the grid finds the first one and the second is ignored.

false

label string When colNames array is empty, defines the heading
for this column. If both the colNames array and this
setting are empty, the heading for this column
comes from the name property.

none

name string Set the unique name in the grid for the column. This
property is required. As well as other words used as
property/event names, the reserved words (which
cannot be used for names) include subgrid and cb.

resizable boolean Defines if the column can be resized true

search boolean When used in formedit, disables or enables searching
on that column

true

sortable boolean Defines is this can be sorted. true

sorttype string Used when datatype is clientSide. Defines the type of
the column for appropriate sorting.
Possible values:

text

Basic Grids jqGrid

- 55 -

 int - for sorting integer
 float - for sorting decimal numbers
 date - for sorting date
 text - for text sorting

width number Set the initial width of the column, in pixels 150

xmlmap string Defines the xml mapping for the column in the

incomming xml file. Use a CCS specification for this

none

Height and Width

Height

The height of the grid can be controlled via the height property.

The height property can be set in pixels, a percent or any valid height measure. The default setting is

pixels (px); the default value for height is 150, i.e. 150px. To set the grid height in 200 pixels we need
to set only the number - i.e.

height: 200

It is important to note that this setting controls only the height of the Body layer. The height of whole
grid is

 the height of the Caption layer (if present),
 plus the height of the Header layer
 plus the height of the Body layer (as set in this option)
 plus the height of the pager (if set as a part of grid).

Setting the height to 100% or auto means that the Body layer will be set to contain all of the returned
rows without scrolling. Any other setting will fix the height of the Body layer and show the scroll bar as
needed.

Width

The width of the grid is set only in pixels.

By default, the width property of the grid is not set, and the width of the grid is calculated as sum of the

width properties of the individual columns set in the colModel. (If the width property in colModel is not
set for a column, the width of that column defaults to 150px).

However, setting the width based on the colModel can be somewhat misleading. The true width of a grid

defined this way will be

 the sum of the widths defined in the colModel
 plus padding and border settings for the cells (set in the CSS).

Basic Grids jqGrid

- 56 -

Suppose we have 5 columns with width settings that sum to 500 and in the CSS we have the following

definition for the table data:

table.scroll tbody td {

 padding: 2px;

 text-align: left;

 border-bottom: 1px solid #D4D0C8;

 border-left: 1px solid #D4D0C8;

 text-overflow: ellipsis;

 overflow: hidden;

 white-space: nowrap;

}

The width of this grid will be 500 (the settings in colModel) plus 5*5 (2 padding pixels * 2 sides + 1
border pixel left) for a total of 525px.

If this somewhat larger width is not a problem for you, then you need do nothing more. However, in
some cases it is needed to have the width of the grid fixed and independent of the widths set for the
columns in colModel. To accomplish this, we can play with two other options in the grid's options array:

width and shrinkToFit.

The default value of shrinkToFit is true which means that if we set the width parameter of the grid, the
widths of all the columns are recalculated as:

new colModel.width = colModel.width * width / swidth

where:

 colModel.width is the width set for this column in the colModel
 width is width set for the grid
 swidth is the sum of all widths set in the colModel

The effect of this recalculation is that all columns are shrunk proportionately. (Or, if the fixed width of
the grid is larger than the sum of the columns, all columns will be proportionately expanded).

If the value of shrinkToFit is false then jqGrid does not make any recalculation of the initial column width
and the grid will have the width set in options array, with a horizontal scroll bar.

Obsolete Properties

The following property, part of jqGrid up to and including version 3.1, has been removed starting with

version 3.2.

Property Description Use Instead

rowheight This option was used to define the height of a single row so
that the overall height of the grid could be set according to
the number of returned rows, making scrolling unnecessary

height: '100%'

Importing/Exporting Grid Configuration

Basic Grids jqGrid

- 57 -

There are times when it is useful to be able to import or export the entire grid configuration to another
file format:

1. Grids constructed on the server can be reconstructed after sorting or paging, so a different
configuration can be quickly used as required

2. Grids can be constructed visually on the server and then loaded from an xml string
3. Grid configuration can even be stored in the database as xml and then loaded as required

These methods support doing that.

Method Parameters Returns Description

jqGridExport options Exports the the current grid configuration to the desired format
 $("#mygrid").jqGridExport({exptype:"xmlstring"});

will export the current grid configuration as xml string
 $("#grid_id").jqGridExport({exptype:"jsonstring"});

will export the current grid configuration as json string.

It is good idea first to play with this option before using
jqGridImport.

jqGridImport options Reads the grid configuration according to the rules in options
and constructs the grid. When constructing the grid for first
time it is possible to pass data to it again with the
configuration.

IMPORTANT NOTE:
When using these methods the pager parameter should not be set as

pager: jQuery("#mypager"),

but as
pager : "#mypager"

or
pager : "mypager"

otherwise the import or export will not work.

Options

Option Values Description Default

imptype xml, json, xmlstring,
jsonstring

 "xml"

impstring in case of xmlstring or jsonstring this should be set ""

impurl valid url to the configuration when xml or json ""

mtype "GET" or "POST" ""

impData {} additional data that can be passed to the url empty
array

xmlGrid {} describes from where to read the xml configuration

and from where the data if any
 config : "roots>grid",

 data: "roots>rows"

jsonGrid {} describes from where to read the json configuration
and from where the data if any

Basic Grids jqGrid

- 58 -

 config : "grid",

 data: "data"

If the data tag is empty, the grid automatically loads the data according to the url and datatype options

of the grid.

Example

options :{

 imptype : "xml", // xml, json, xmlstring, jsonstring

 impstring: "", // in case of xmlstring or jsonstring this should be set

 impurl: "", // valid url to the configuration when xml or json

 mtype: "GET", // the type "GET" or "POST"

 impData : {}, // additional data that can be passed to the url

 xmlGrid :{ // describes from where to read the xml configuration and from where the data if any

 config : "roots>grid",

 data: "roots>rows"

 },

 jsonGrid :{ // describes from where to read the json configuration and from where the data if any

 config : "grid",

 data: "data"

 }

}

As a further example of what is needed, the distribution package contains two files: json_test.txt and
xml_test.xml to show the different (xml and json) configurations.

Events

The action to take on an event is set as a property of the grid, e.g.
onSelectRow: function(id){

 if(id && id!==lastSel){

 jQuery('#tbleditable').restoreRow(lastSel);

 lastSel=id;

 }

 jQuery('#tbleditable').editRow(id, true); },

The above example specifies the action to take when a row is selected. The following one shows how to
use onSortCol:

onSortCol: function(index, colindex, sortorder) {

 // here is the code

 }

The events that you can use to perform some additional action are listed here, in alphabetic order:

Event Parameters Description

afterInsertRow rowid,

rowdata,
rowelem

This event fires after every inserted row.

 rowid is the id of the inserted row
 rowdata is an array of the data to be inserted into the row.

This is array of type name: value, where the name is a name

from colModel
 rowelem is the element from the response. If the data is xml

this is the xml element of the row; if the data is json this is

Basic Grids jqGrid

- 59 -

array containing all the data for the row

gridComplete none This fires after all the data is loaded into the grid and all other
processes are complete

loadBeforeSend xhr A pre-callback to modify the XMLHttpRequest object (xhr) before it
is sent. Use this to set custom headers etc. The XMLHttpRequest is
passed as the only argument.

loadComplete none This event is executed immediately after every server request

loadError xhr,st,err A function to be called if the request fails. The function gets passed
three arguments: The XMLHttpRequest object (XHR), a string
describing the type of error (st) that occurred and an optional
exception object (err), if one occurred.

onCellSelect rowid, iCol,
cellcontent

fires when we click on particular cell in the grid rowid is the id of
the row iCol is the index of the cell cellcontent is the content of the
cell. (Note that this available when we not use cell editing module
and is disabled when using cell editing). Important note regarding

IE6: this event may exhibit strange behaviours because of a bug in
early IE6 releases. When we have a hidden column the index will
not be calculated correctly. You can avoid using this feature in a
grid with hidden columns, test for these browsers and conditionally

suppress this feature, or suggest that your IE6 users upgrade. For
more information refer to http://support.microsoft.com/kb/814506

ondblClickRow rowid Raised immediately after row was double clicked.
Calling convention:

ondblClickRow: function(rowid) {

 // here is the code

 }

onHeaderClick gridstate Can be used when clicking to hide or show grid; gridstate is the
state of the grid (visible or hidden)

onRightClickRow rowid Raised immediately after row was right clicked.

onSelectAll array of the
selected ids

This event fires (if defined) when multiselect is true and you click
on the header checkbox. Parameter passed to this event is array of
selected rows. If the rows are unselected, the array is empty.

onSelectRow rowid Raised immediately after row was clicked.

onSortCol index,
colindex,
sortorder

Raised immediately after sortable column was clicked and before
sorting the data

 index is the index name from colModel
 colindex is the index of column

 sortorder is the sorting order - can be 'asc' or 'desc'

Additional Events specific to Cell Editing, subGrids and Tree Grids are found in their respective topics.

Methods

Calling Convention:

http://support.microsoft.com/kb/814506

Basic Grids jqGrid

- 60 -

jQuery("#grid_id").jqGridMethod(parameter1,...parameterN)

Where:

 grid_id is the id of the already constructed jqGrid.

 jqGridMethod is a method applied to this jqGrid.
 parameter1,...parameterN - a list of parameters

IMPORTANT: Some 'get' and 'set' methods (e.g., getUrl()) supported up to version 3.1 have been

removed in version 3.2 and replaced by more generic methods (e.g., getGridParam(url) or
setGridParam({url:value})). See Replaced Methods for details.

Where a method is not designed to return a requested value, then what is returned is the jqGrid object

and a set of such methods can be chained, e.g.,

jQuery("#grid_id").setGridParam({..}).hideCol("somecol").trigger("reloadGrid")

Method Parameters Returns Description

addJSONData data true on
success,
otherwise
false

Populates a grid with the passed data (an array).
Suppose we have data from a particular
webservice (jsonresponse), then

var mygrid = jQuery("#"+grid_id)[0];

var myjsongrid =
eval("("+jsonresponse.responseText+")");
mygrid.addJSONData(myjsongrid);
myjsongrid = null; j

sonresponse =null;

will populate the data to the grid. And, of course,
the data in myjsongrid can be manipulated before

being passed to addJSONData.

addJSONData is a privileged method.

addRowData rowid, data,
position (first,
last, before,
after - default
last), srcrowid

(source row,
applies only
when position
is either

before or
after)

true on
success,
otherwise
false

Inserts a new row with id = rowid containing the
data in data (an array) at the position specified
(first in the table, last in the table or before or
after the row specified in srcrowid). The syntax of
the data array is: {name1:value1,name2:

value2…} where name is the name of the column
as described in the colModel and the value is the
value.

addXmlData xmlresponse true on
success,

otherwise
false

Populates a grid with the passed data. Suppose
we have data from a particular webservice

(xmlresponse), then

var mygrid = jQuery("#"+grid_id)[0];
mygrid.addXmlData(xmlresponse.responseXML);

Basic Grids jqGrid

- 61 -

will populate the data to the grid. And, of course,
the data in xmlresponse can be manipulated
before being passed to addXmlData.

addXmlData is a privileged method.

clearGridData none jqGrid
object

Clears the currently loaded data from grid

delRowData rowid true on
success,
otherwise
false

Deletes the row with the id = rowid. This
operation does not delete a data from the server.

FormToGrid rowid, formid jqGrid
object

Reads data from a form (previously defined in
html) identified by formid and loads data into the
grid in row with rowid. If the names of both grid
and form are the same the data from the form
replaces the data in the grid. Note that all fields

from grid can be replaced, including hidden. This
is the opposite of GridToForm

getCell rowid, iCol the
content of
the cell

iCol can be either the column index or the name.

getDataIDs none array of
the id's in

the current
grid view.
Empty
array if no
data is

available.

getGridParam name the value
of the
requested
parameter.

name is the name from options array. For a
particular options, see below. If the name is not
set the entry options are returned.

getRowData rowid array with
data of the

requested
id = rowid.

The returned array is of type name:value, where
the name is a name from colModel and the value

is a actual value. Returns empty array if the row
can not be found.

GridToForm rowid, formid jqGrid
object

Reads data from the given rowid and fills the
form (previously defined in html) identified by
formid. If the names of both grid and form are
the same the data from the grid replaces the data
in the form. Note that all fields from grid can be
used, including hidden.

hideCol colname jqGrid
object

Hides a column with a given colname. If the
colname is a string, only the specified column is
hidden. If the colname is array of type
["name1","name2"] then the columns with names

'name1' and 'name2' will be hidden at the same
time. The names in colname must be valid names
from the colModel. The width of the grid is
changed according to the following rules: if the

Basic Grids jqGrid

- 62 -

grid currently has no horizontal scroll bar, the
width of the grid is decreased by the width of the
hidden column(s). If a scrollbar is visible, the
width is adjusted which may or may not change
the width of the grid.

resetSelection none jqGrid
object

Resets (unselects) the selected row(s). Also
works in multiselect mode.

setCaption caption jqGrid

object

Sets a new caption of the grid. If the Caption

layer was hidden, it is shown.

setCell rowid,
colname,
data, class,

properties

jqGrid
object

This method can change the content of particular
cell and can set class or style properties. Where:

 rowid: the id of the row,
 colname: the name of the column (this

parameter can be a number beginning
from 0)

 data: the content that can be put into the
cell. If empty string the content will not be
changed

 class: if class is string then we add a class
to the cell using addClass; if class is an

array we set the new css properties via
css

 properties: sets the attribute properies of
the cell

Example :

setCell("10", "tax", '', {color:'red','text-
align':'center'}',{title:'Sales Tax'})

will set the contents of the tax field in row 10 to

red and centered and change the title to 'Sales
Tax'.

setGridParam object jqGrid
object

Sets a particular parameter. Note - for some
parameters to take effect a trigger("reloadGrid")

should be executed. Note that with this method
we can override events like onSelectRow, etc.
Example:
setGridParam({

url:"newurl",
page:1,
onSelectRow:function(id){/*here is the new
code*/}

});
The name (in the name:value pair) is the name
from options array. For a particular options, see
below. If the name is not set the entry options
are returned.

setGridHeight new_height jqGrid
object

Sets the new height of the grid dynamically. Note
that the height is set only to the grid cells and
not to the grid. <>new_height<> can be in

Basic Grids jqGrid

- 63 -

pixels, percentage, or 'auto'

setGridWidth new_width,
shrink

jqGrid
object

Sets a new width to the grid dynamically. The
parameters are:

 new_width is the new width in pixels.
 shrink (default true) has the same

behavior as shrinkToFit

setLabel colname,
newlabel,
sattr

jqGrid
object

Sets a new label in the header for the specified
column; can also set attributes and classes
(sattr). The parameters are:

 colname(mixed) is either the name of the
column (from colModel) or the number of
the column in colModel beginning from 0.

 newlabel(string) is the label that we want

to change. Can be a empty string.
 sattr(mixed) - if this parameter is array -

we add this as attributes to this header
element. if the parameter is string we add
a class to this element

setRowData rowid, data true on
success,

otherwise
false

Updates the values (using the data array) in the
row with rowid. The syntax of data array is:

{name1:value1,name2: value2…} where the
name is the name of the column as described in
the colModel and the value is the new value.

setSelection rowid,

onsetselection

jqGrid

object

Toggles a selection of the row with id = rowid; if

onsetselection is true (the default) then the event
onSetRow is launched, otherwise it is not

showCol colname jqGrid
object

Shows a column with a given colname. If the
colname is a string we show only the specified

column. If colname is array of type
["name1","name2"] then the columns with names
'name1' and 'name2' will be shown at the same
time The names in colname must be valid names

from colModel. The width of the grid changes by
the width of the newly-shown columns.

.trigger("reloadGrid"); none jqGrid
object

Reloads the grid with the current settings. This
means that a new request is send to the server if

datatype is xml or json. This method should be
applied to an already-constructed grid - e.g.,
jQuery("#grid_id").trigger("reloadGrid");

getGridParam

Option Returns

getGridParam("url") the current url from options array

Basic Grids jqGrid

- 64 -

getGridParam("sortname") the name of last sorted column

getGridParam("sortorder") the last sorted order

getGridParam("selrow") the id of the selected row, null if row is not selected

getGridParam("page") the current page number.

getGridParam("rowNum") the current number of requested rows

getGridParam("datatype") the current datatype.

getGridParam("records") the current number of records in grid.

getGridParam("selarrrow") array of id's of the selected rows when multiselect options is
true. Empty array if not selection.

setGridParam

Method Description

setGridParam({url:newvalue}) Parameters: url - string Set a new url, replacing the
older.

setGridParam({sortname:newvalue}) Parameters: sortname - string Set a new sort name

setGridParam({sortorder:newvalue}) Parameters: sortorder - string (asc or desc) Set a new
sort order

setGridParam({page:newvalue}) Parameters: page - integer >0 Set a new page number

setGridParam({rowNum:newvalue}) Parameters: rownum - integer > 0 Set a new number of
requested rows.

setGridParam({datatype:newvalue}) Parameters: datatype - string
(xml,json.xmlstring,jsonstring, clientSide) Set a new

datatype.

Advanced Methods

Advanced methods offer the ability to dynamically change properties of the colModel. To keep the basic
code small, these reside in a separate module (grid.custom.js) that must be installed for these to be

available. See Installation

Method Parameters Returns Description

getColProp colname an array
of the
properties
of the

given
column
from
colModel

GridDestroy grid_id true on
success,
otherwise
false

Destroys the entry grid from the DOM (clears all the html
associated with the grid and unbinds all events)

GridUnload grid_id true on
success,
otherwise
false

The only difference to previous method is that the grid is
destroyed, but the table element and pager (if any) are left
ready to be used again.

Basic Grids jqGrid

- 65 -

setColProp colname,
properties

jGrid
object

Sets new properties in colModel. This method is ideal for
dynamically changing properties of the column. Note that
some properties - like width and align - have no effect. For
example:
jQuery("#grid_id").
setColProp('colname',{editoptions:{value:"True:False"}})
will change the editoptions values.

sortGrid colname,reload jGrid
object

Sorts the given colname and shows the appropriate sort
image. The same (without sorting image) can be done using

setGridParam({sortname:'myname'}).trigger('reloadGrid')
If the reload is set to true, the grid reloads with the current
page and sortorder settings.

Obsolete Methods

The following methods, all part of jqGrid up to and including version 3.1, have been removed starting
with version 3.2, replaced by a more generic method.

'Get' Methods Returns Use Instead

getUrl the current url from options array getGridParam("url")

getSortName the name of last sorted column getGridParam("sortname")

getSortOrder the last sorted order

getSelectedRow the id of the selected row, null if row is not
selected

getGridParam("selrow")

getPage the current page number getGridParam("page")

getRowNum the current number of requested rows getGridParam("rowNum")

getDataType the current datatype getGridParam("datatype")

getRecords the current number of records in grid. getGridParam("records")

getMultiRow array of id's of the selected rows when
multiselect options is true. Empty array if no
selection.

getGridParam("selarrrow")

'Set' Methods to set Use Instead

setUrl a new url, replacing the older. setGridParam({url:newvalue})

setSortOrder a new sort order setGridParam({sortname:newvalue})

setPage a new page number setGridParam({page:newvalue})

setRowNum a new number of requested rows setGridParam({rowNum:newvalue})

setDataType a new datatype setGridParam({datatype:newvalue})

Integrations

Many other plugins in the jQuery world are also very useful within jqGrid. We attempt to list them here
and describe how they can be used

Basic Grids jqGrid

- 66 -

UI Datepicker

TableDnD

Thanks to Denis Howlett, we can now drag and drop table rows using his TableDnD plugin with only a
very few lines of code.

How to use:

Call the plugin before using jqGrid and in gridComplete event, add tableDnDUpdate

<table id='mygridtable' class='scroll'></table>

jQuery("#grid_id").tableDnD()

jQuery("#grid_id").jqGrid({

...

 gridComplete : function(){

 jQuery("#grid_id").tableDnDUpdate();

 }

...

});

This will enusre that the grid rows remain draggable no matter how many changes are made, since the

gridComplete event is raised every time we add, update or delete records.

This will also work with local data, i.e an array.

An example of posting the change to the server on every "drop", using the appropriate event in
TableDnD:

$("#grid_id").tableDnD({

 onDrop: function(table, row) {

 var posturl = 'yourURL' ;

 var orderstring = $.tableDnD.serialize() ;

 $.post(posturl, orderstring, function(message,status) {

 if(status !== 'success') {

 alert(message);

 }

 })

 }

 }); ;

For more information on how to use the different options available with this plugin, please refer to Denis

Howlett's blog on the topic.

mailto:denish@isocra.com?subject=Using%20TableDnD%20with%20jqGrid
http://www.isocra.com/2008/02/table-drag-and-drop-jquery-plugin/
http://www.isocra.com/2008/02/table-drag-and-drop-jquery-plugin/
http://www.isocra.com/2008/02/table-drag-and-drop-jquery-plugin/

Navigating jqGrid

- 67 -

Navigating

If your grids are all so small that they can display all records at the same time, then you don't need to
worry about navigation. But more likely, you will want to display the available records a few at a a time.
And for that, you will need the Navigation Bar.

To use this feature we need to enable form editing. For more information refer to Installation.

HTML

The Navigation Bar, also known as the pager, is defined first in html -- normally, but not necessarily,
placed so it appears at the bottom of the grid. Note that it is a <div>, not a <table>.

<body>

<table id="list" class="scroll"></table>

<div id="pager" class="scroll" style="text-align:center;"></div>

</body>

In this example above, the pager controls are centered, but they could be aligned left or right to suit

your preferences, as shown in these three examples:

Grid Definition

The pager is then defined in the grid by a grid property:

pager: jQuery('#pager'),

or
pager: 'pager_id',

Syntax

Calling Convention:

jQuery("#grid_id").navGrid("#pager",{parameters})

Where:

 grid_id - the id of the already constructed jqGrid.
 pager - the id of the navigation bar
 parameters - an array of settings, defined below

Navigating jqGrid

- 68 -

Properties, Events and Methods

Properties

Several properties of the grid govern the function and appearance of the Navigation bar:

Property Type Description Default

firstimg string Link to image url for the first button first.gif

lastimg string Link to image url for the last button last.gif

nextimg string Link to image url for the next button next.gif

page integer The requested initial page number when we use datatypes xml
or json (data returned from server)

1

pager DOM
element or

string

Sets the pager bar for the grid. Must be a valid html element.
If the element has class “scroll”, then the width is equal to the

grid. Usage:
If parameter is a DOM element, jQuery("#mypager");
if using a string, "mypager", where mypager is the id of the
pager. Note the missing "#"

pgbuttons boolean Disables or enables pager buttons, if pager is present true

pginput boolean Disables or enables the input box for current page, if pager is
present

true

pgtext string Text that appear before the number of total pages "/"

previmg string Link to image url for the previous button prev.gif

recordtext string Displays the text associated with the display of total records;
specified value must be in quotes.

"Rows"

rowList array This parameter constructs a select box element in the pager in
which the user can change the number of the visible rows.

empty
array

rowNum integer The initial number of rows that are be returned from the server 20

viewrecords boolean Display the total records from the query in the pager bar false

Events

One event of the grid ralates to the Navigation bar:

Event Parameters Description

onPaging pgButton This event fires after click on [page button] and before populating the data.
Also works when the user enters a new page number in the page input box
(and presses [Enter]). pgbutton(string) can be - first,last,prev,next

Methods

The only methods we need are to invoke the pager itself and to add custom buttons, if necessary

Navigating jqGrid

- 69 -

Method Parameters Returns Description

navGrid pager_id,
parameters

jQuery
object

accepts the following settings to govern which buttons
appear on the Navigation bar; any of them may be set to
true or false. The default for all is true, but may be changed
by, for example
{refresh: true, edit: true, add: true, del: false, search: true}

or

{del: false}

The position of these buttons is controlled by a position
setting (the default is left):
{add:false,del:false,edit:false,position:"right"}

Parameters for these buttons can be sent by adding them
after the main array:
...{add:false,edit:false,del:false},

 {}, // edit parameters

 {}, // add parameters

 {reloadAfterSubmit:false} //delete parameters

navButtonAdd jQuery

object

supports adding custom buttons. This method must be

chained with the setting of the Standard Buttons. See details
and examples in Custom Buttons

Custom Buttons

Calling Convention:

jQuery("#grid_id").navGrid("#pager",{standard parameters}).navButtonAdd("#pager",{custom parameters});

The Custom parameters are

{ caption:'NewButton', buttonimg:'', onClickButton:null, position "last", title:'ToolTip' }

where

 caption: (string) the caption of the button, can be a empty string.
 buttonimg: (string) full path to valid image. If empty string, no image will be attached.
 onClickButton: (function) action to be performed when a button is clicked. Default null.

 position: ("first" or "last") the position where the button will be added (i.e., before or after the
standard buttons).

 title: (string) a tooltip for the button.

Multiple buttons can be added by continuing the chain.

jQuery("#grid_id").navGrid('#Pager',{

 edit:false,add:false,del:false,search:false

 }).navButtonAdd('#Pager',{

 caption:"Add", buttonimg:"fullpath/row_add.gif", onClickButton: function(){ alert("Adding Row")},

position:"last"

 }).navButtonAdd('#Pager',{

 caption:"Del", buttonimg:"fullpath/row_del.gif", onClickButton: function(id){ alert("Deleting Row:

"+id)}, position:"last"

 });

Navigating jqGrid

- 70 -

Example I

We want to mimic the look of form editing when in-line editing (i.e., showing buttons on the Navigation
bar rather than in the toolbar or on the form), like this:

The code:

jQuery("#grid_id").navGrid('#Pager',{

 edit:false,add:false,del:false,search:false

 }).navButtonAdd('#Pager',{

 caption:"Add", buttonimg:"fullpath/row-insert-under.gif", onClickButton: function(){

 var datarow = {name1: value1, name2: value2', ...};

 var su=jQuery("#grid_id").addRowData("X",datarow,"last");

 if(su) { jQuery("#grid_id").setSelection('X') }; }, position:"last"

 }).navButtonAdd('#Pager',{

 caption:"Delete", buttonimg:"fullpath/row-delete.gif", onClickButton: function(){

 var gr = jQuery("#grid_id").getGridParam("selrow");

 if(gr != null) {

 jQuery("#grid_id").delGridRow(gr,{afterSubmit: function(xhr,postdata){ alert ('After Submit: ' +

postdata); return [true]},

 url: 'delete.php'});

 } else {

 alert("Please Select Row to delete!");

 };

 }, position:"last"

 });

Example II

This example shows uses one of the methods new to version 3.2 to synchronize the grid with a form
manually defined in html. (A button on the form moves the data back again).

The code:

jQuery("#tbleditable").navGrid('#pcustbut',{edit:false,add:false,del:false})

 .navButtonAdd('#pcustbut',{caption:"Edit",

 onClickButton:function(){

 var gsr = jQuery("#custbut").getGridParam('selrow');

 if(gsr){

 jQuery("#custbut").GridToForm(gsr,"#order");

 } else {

 alert("Please select Row")

 }

}

});

Searching jqGrid

- 71 -

Searching

The columns in the grid can be used as the basis for a search form to appear above, below, or in place
of, the grid. Searching is a way of querying data from the server using specified criteria (not filtering
what already appears in the grid).

There are two approaches:

 a simple approach using a single field, or
 a more complex approach involving many fields.

These approaches use colModel names and url parameters from jqGrid and so can be called only on an

already-constructed grid.

Searching on a Single Field

Calling Convention:

jQuery("#grid_id").searchGrid(properties);

Where:

 grid_id is the id of the parent grid
 properties is an array of settings in name: value pairs format.

Properties

Property Description Default

top the initial top position of search dialog 0

left the initial left position of search dialog 0

width the width of search dialog 300

height the height of Search dialog 200

modal sets dialog in modal mode false

drag sets the dialog to dragable true

Find the text of the button clicked to start the Find "Find"

Clear the text of the button when you click to clear search string "Reset"

dirty applicable only in navigator false

checkInput when set to true prerforms input validation according to the rules in
editrules option in colModel

false

Events

Searching jqGrid

- 72 -

Event Parameters Description

onInitializeSearch form_id fires once when creating the data for searching.

beforeShowSearch form_id fires before showing the form

afterShowSearch form_id fires after showing the form

Notes

If the top and left off-set properties are not set, the dialog appears at the upper left corner of the grid.
Top and left off-sets are in relation to the viewing window, not the grid, so {top:10, left:10} will be
indented slightly from the window, and may be nowhere near the grid.

To exclude a field from the search possibilities, set the search option in colModel to false. Example:

colModel[{name:'somename'…, search:false}…]

When the find button is clicked, jqGrid adds three parameters to the url, in name=value pairs:

 sField: the 'searchField', the value comes from the index in colModel
 sValue: the 'searchString', the value is the entered value
 sOper: the 'searchOper', the value is the type of search - see sopt array, below

Translation string for the search options:

odata : ['equal', 'not equal', 'less', 'less or equal','greater','greater or equal', 'begins with','ends

with','contains'],

If you want to change or remove the order change it in sopt:

sopt: null // ['bw','eq','ne','lt','le','gt','ge','ew','cn']

by default all options are allowed. The codes are as follows:

eq - equal (=)
ne - not equal (<>)
lt - less than (<)
le - less than or equal to (<=)
gt - greater than (>)
ge - greater than or equal to (>=)

bw - begins with (LIKE val%)
ew - ends with (LIKE %val)
cn - contain (LIKE %val%)

Typically this method is applied to the click action of a button or link. For example,

jQuery("#bsdata").click(function(){

Searching jqGrid

- 73 -

 jQuery("#search").searchGrid({sopt:['cn','bw','eq','ne','lt','gt','ew']});

});

We can set common options for all search dialogs using the $.jgrid.search object with $extend()

The default values are:

$.jgrid.search = {

 caption: "Search...",

 Find: "Find",

 Reset: "Reset",

 odata : ['equal', 'not equal', 'less', 'less or equal','greater','greater or equal', 'begins with','ends

with','contains']

};

$.extend($.jgrid.search,{Find:'Search'})

will replace the text of search button from Find to Search.

Searching on Many Fields

This method can be called to construct an advanced search form for the grid.

HTML

The search form is defined, first, in the html, positioned above or below the grid definition, as you prefer.

<div id="mysearch"></div>

Calling Convention:

jQuery("#mysearch").filterGrid("#grid_id",{...})

where:
grid_id is the id of the grid to which the search will be applied.

parms is an array of parameters (see below).

Additional Methods

When using filterGrid we can use two additional privileged methods:

triggerSearch - triggers a search to the grid, for example,
var sg = jQuery("#mysearch").filterGrid(...)[0];

sg.triggerSearch();

clearSearch - clears the search form values and triggers the search with empty or default values.
sg.clearSearch();

How this works

When the search is activated, an array of type name:value is posted to the server. Note that this array is

added to the postData parameter. We post only fields that have an entered value. When we clear the the
search form, the values are deleted from the postData array. When posting to the server, we try to pass,
not the name, but the index set in colModel. When the index is not found we use the name.
Additionally, we add a search=true to the posted data.

Searching jqGrid

- 74 -

Parameters

Parameter Description Default

gridModel when set to true, we use the parameters from colModel to construct the
search, using the following options from colModel: name, index,
edittype, editoptions, search.

Additional parameters can be set in colModel to meet the needs only of
this method. These specific parameters are:
defval: default value for the search field this will be set as initial search.
surl: valid only if edittype:'select'; url from where we can get already-

constructed select element - e.g., we expect the following html content
(square brackets have been substituted for angle brackets so we can

see the code):

[select]
[option value='val1'] Value1 [/option]
[option value='val2'] Value2 [/option]
...

[option value='valn'] ValueN [/option]
[/select]

Only fields with search: true are attached to the form. Hidden elements
are not included.

When false we should construct a filterModel (see below) to perform a
search.

false

gridNames this option works only if gridModel is true. When set to true we use the

names from colNames as labels for the search fields.

false

gridToolbar this option tries to size the input elements so that they match the initial
width of the grid columns. Note that when set to true this does not

place the search form on the toolbar. If we want to place the search
fields above the columns so that they match the column widths, we
should set gridModel: true, gridNames:false, gridToolbar: true and then
if we have gridid with enabled toolbar - i.e toolbar:[true,"top"]
jQuery("#t_"+gridid).filterGrid("#"+gridid,{gridModel: true,

gridNames:false, gridToolbar: true});

false

filterModel The filter model should be used when gridModel is set to false
filterModel [

...

{label:'LableFild', name: 'colname', stype: 'select',

defval: 'default_value', surl: 'someurl', sopt:{optins for

the select}},

...

]

label: the label of the field (text description)
name: the name of the column - should equal of the name in colModel.
Note that we search on the index of that coulmn.

stype: type of input element - can be only 'text' or 'select'
defval: default value for the search input element.
surl: used only when stype is 'select'; this is a url from where we can
get an already-constructed select element - i.e. we expect the following

[]

Searching jqGrid

- 75 -

html content:

[select]

[option value='val1'] Value1 [/option]

[option value='val2'] Value2 [/option]

...

[option value='valn'] ValueN [/option]

[/select]

sopt: valid options that can be applied to the element, the same as
editoptions from colModel.

formtype defines how the form should be constructed. Can be 'horizontal' or

'vertical'

"horizontal"

autosearch When set to true the behavior is as follows:

 When the user input some value in the input element they can

press enter and the search is activated.
 When a select box is used search is activated when the values of

select is changed.

When set to false we can use the button to perform the search.

true

formclass the class that can be applied to the form "filterform"

tableclass the class that can be applied to the table (the table is a child of form
element)

"filtertable"

buttonclass class that can be applied to the buttons "filterbutton"

searchButton the label of the button that performs the search. (Note - this label does
not come from the language files, since the intention is to separate this

method so that it can be used anywhere - i.e. without using jqGrid)

"Search"

clearButton the label of the button that clears the already-entered values "Clear"

enableSearch enable/disable the search button false

enableClear enable/disable the clear button false

beforeSearch event which fires before a search null

afterSearch event which fires after the search is performed null

beforeClear event which fires before clearing entered values (i.e when clear button

is clicked)

null

afterClear event which fires after clearing entered values null

url a separate url for searching values ''

marksearched when set to true, after a search every column to which search is
applied is marked as searchable - e.g., in the upper left corner of the
column header a marker is set to indicate that this column is part of
the applied search. When we clear the values the markers disappear.

true

Editing jqGrid

- 76 -

Editing

One of the key reasons for displaying data in a grid is to edit it, quickly and easily. jqGrid supports
editing data in three ways:

1. cell editing: edit specific cells in a gird

2. in-line editing: edit several cells in the same row
3. form editing: create a form to edit outside of the grid

Cell Editing

cellEditing supports key navigation and editing individual cells, with the following behaviour:

 When we click on a cell that is not editable, the cell is selected and we can use the up, down, left
and right keys to navigate through the cells.

 If we move to a cell that is editable, we can press [Enter] to edit the cell. The cell is saved when

we press [Enter] again, when we press [Tab], or when we click on another cell. If we press [ESC],
the cell is not saved. When editing a cell, the cursor keys move only within the cell.

 When the cell content is changed, the cell becomes 'dirty' and there is a marker at the upper left
corner of the cell.

 When we click on cell that is editable, then we go directly into edit mode.

To enable this feature, ensure grid.celledit.js is loaded. For more information refer to Installation

The properties, events and methods used in cell editing are a sub-set of those of the parent grid, and
described in the pages that follow.

Example

Editing jqGrid

- 77 -

Properties

Property Type Description Default

cellEdit boolean Enables (disables) cell editing. When this option is set to true, Multi-
select is disabled, onSelectRow can not be used, and hovering is
disabled (when mouseover on the rows).

true

cellsubmit string Determines where the contents of the cell are saved: 'remote' or
'clientArray'.

 If 'remote' the content is immediately saved to the server using
the cellurl property, via ajax. The rowid and the cell content are

added to the url as name:value pairs. For example, if we save
the cell named mycell,{id: rowid, mycell: cellvalue} is added to
the url.

 If 'clientArray', no ajax request is made and the content of the

changed cell can be obtained via the method getChangedCells

'remote'

cellurl string the url where the cell is to be saved null

We can use all the available options in colModel that are used for inline and form editing, including

clientSide validation e.g., editrules:{number:true...}

Events

Many of the following events use the parameters defined here:

 rowid - is the rowid
 cellname is the name of the cell (name from colModel)
 value - the value of the cell

 iRow - the index of the row (do not mix with rowid)
 iCol - the index of the column

Event Parameters Description

afterEditCell rowid, cellname,
value, iRow, iCol

applies only to a cell that is editable; this event fires after the
cell is edited.

afterSaveCell rowid, cellname,

value, iRow, iCol

applies only to a cell that is editable; this event fires after the

cell has been successfully saved. This is the ideal place to
change other content.

afterSubmitCell serverresponse,
rowid, cellname,

value, iRow, iCol

applies only to a cell that is editable; this event Fires after the
cell and other data is posted to the server Should return array

of type [success(boolean),message] when return [true,""] all
is ok and the cellcontent is saved [false,"Error message"] then
a dialog appears with the "Error message" and the cell content
is not saved. servereresponse is the response from the server.
To use this we should use serverresponse.responseText to
obtain the text message from the server.

beforeEditCell rowid, cellname,
value, iRow, iCol

applies only to a cell that is editable; this event fires before
editing the cell.

Editing jqGrid

- 78 -

beforeSaveCell rowid, cellname,
value, iRow, iCol

applies only to a cell that is editable; this event fires before
validation of values if any. This event can return the new value
which value can replace the edited one
beforeSaveCell : function(rowid,celname,value,iRow,iCol) { if(
some_condition) { return "new value"; } }
The value will be replaced with "new value"

beforeSubmitCell rowid, cellname,
value ,iRow, iCol

applies only to a cell that is editable; this event fires before
submit the cell content to the server (valid only if cellsubmit :
'remote'). Can return new array that will be posted to the

server.
beforeSubmitCell : function(rowid,celname,value,iRow,iCol) {
if(some_condition) { return {name1:value1,name2:value2}
} else { return {} } }

The returned array will be added to the cellurl posted data.

errorCell serverresponse,
status

fires if there is a server error; servereresponse is the response
from the server. To use this we should apply
serverresponse.responseText to obtain the text message from
the server. status is the status of the error. If not set a modal
dialog apper.

formatCell rowid, cellname,
value, iRow, iCol

applies only to a cell that is editable; this event allows
formatting the cell content before editing, and returns the

formatted value

onSelectCell rowid, celname,
value, iRow, iCol

applies only to cells that are not editable; fires after the cell is
selected

Methods

Method Parameters Description

editCell iRow, iCol edit a cell with the row index iRow(do not mix with rowid) in index

column iCol

getChangedCells method Returns an array of the changed cells depending on method (string,
default 'all'). When 'all' this method returns all the changed rows;
when 'dirty' returns only the changed cells with the id of the row

restoreCell iRow, iCol restores the edited content of cell with the row index iRow(do not
mix with rowid) in index column iCol

saveCell iRow, iCol saves the cell with the row index iRow(do not mix with rowid) in
index column iCol

Inline Editing

Inline editing is a quick way to update database information by supporting editing directly in the row of
the grid, as shown in this example:

Editing jqGrid

- 79 -

To do this we need to enable this feature. For more information refer to Installation.

This feature simply modifies some of the properties, and uses the methods, of the parent grid.

Properties

By default, columns are not editable so to use this option, we must add to the settings in the colModel
for the columns we wish to be able to edit (it is not necessary to make all columns editable). There are
four settings to consider:

 editable
 edittype
 editoptions, and
 editrules

For example,

{name:'stock', index:'stock', width:60, editable:true, edittype:"checkbox", editoptions: {value:"Yes:No"}},

editable: defines if this field is editable (or not). Default is false. To make a field editable, set this to
true: editable:true

edittype: defines the type of of the editable field. Possible values: 'text', 'textarea', 'select', 'checkbox'.
The default value is 'text'.

editoptions: an array of allowed options (attributes) for the chosen edittype

Details of edittype and editioptions appear below.

If we are going to save the results of the edit into a server-side database, we also need to specify the

server-side method that is going to accept the edited data. This is set as a grid option: editurl

Editing jqGrid

- 80 -

What jqGrid does

edittype is 'text'

When edittype is 'text', jqGrid constructs a input tag of type text:
<input type="text"/>

In editoptions we can set all the possible attributes for this field. For example,
editoptions: {size:10, maxlength: 15}

will cause jqGrid to construct the following input
<input type="text" size="10" maxlength="15" />

In addition to the these settings, jqGrid adds the following:

 id: the id that is added to this element is a combination of the id of the row and the name -
rowid_name

 name: the name from colModel

 value: the contents of the cell.

Consider the example above and suppose that the id of the row is 12 and name is invdate then the result
is:
<input type="text" id="12_invdate" name="invdate" size="10" maxlength="15" value="someval"/>

edittype is 'textarea'

When edittype is 'textarea', jqGrid constructs a input tag of type textarea
<input type="textarea" .../>

In editoptions we can add additional attributes to this type. Typically, these govern the size of the box:
editoptions: {rows:"2",cols:"10"}

To these attributes jqGrid adds id and name attributes just as for text type.

edittype is 'checkbox'

When edittype is 'checkbox', jqGrid constructs a input tag as follows:
<input type="checkbox" .../>

editoptions is used to define the checked and unchecked values. The first value is checked. For example
editoptions: { value:"Yes:No" }

defines a checkbox in which when the value is Yes the checkbox becomes checked, otherwise unchecked.

This value is passed as parameter to the editurl.

To these attributes jqGrid adds id and name attributes just as for text type.

Editing jqGrid

- 81 -

edittype is 'select'

When edittype is 'select', jqGrid constructs a input tag as follows:

<select>

<option value='val1'> Value1 </option>

<option value='val2'> Value2 </option>

...

<option value='valn'> ValueN </option>

</select>

To construct this element, editoptions must contain a set of value:label pairs with the value separated
from the label with a colon (:). These sets of pairs can be either a string or an array. For example, both

colModel : [

 ...

 {name:'myname', edittype:'select' editoptions:{value:"1:One;2:Two"} }

 ...

]

And

colModel : [

 ...

 {name:'myname', edittype:'select', editoptions:{value:{1:'One',2:'Two'}} }

 ...

]

are correct and can be used as a 'select' definition.

Whichever you use, something like the following

editoption: { value: "FE:FedEx; IN:InTime; TN:TNT" }

will construct

<select>

<option value='FE'> FedEx </option>

<option value='IN'> InTime </option>

<option value='TN'> TNT </option>

</select>

To this element, jqGrid adds the id and name attributes as above.

Multiple selection of options in a select box is also possible:

editoptions: {multiple:true, ... }

Methods

For inline editing, we have three additional methods (of the Grid API) available:

 editRow
 saveRow
 restoreRow

These methods can be called, of course, only on an already-constructed grid, from a button click or from
an event of the grid itself:

Editing jqGrid

- 82 -

onSelectRow: function(id){

 if(id && id!==lastSel){

 jQuery('#tbleditable').restoreRow(lastSel);

 lastSel=id;

 }

 jQuery('#tbleditable').editRow(id, true);

},

In this example, if another was row being edited and has not yet been saved, the original data will be
restored and the row "closed" before "opening" the currently-selected row for editing (where lastSel was
previously defined as a var).

editRow

Calling convention:
editRow(rowid, keys, oneditfunc, succesfunc, url, extraparam, aftersavefunc, onerrorfunc)

where

 rowid: the id of the row to edit
 keys: when set to true we can use [Enter] key to save the row and [Esc] to cancel editing.
 oneditfunc: fires after successfully accessing the row for editing, prior to allowing user access to

the input fields. The row's id is passed as a parameter to this function.

If keys is true, then the remaining settings -- succesfunc, url, extraparam, aftersavefunc and onerrorfunc
-- are passed as parameters to the saveRow method when the [Enter] key is pressed (saveRow does not
need to be defined as jqGrid calls it automatically). For more information see saveRow method below.

When this method is called on particular row, jqGrid reads the data for the editable fields and constructs
the appropriate elements defined in edittype and editoptions.

saveRow

Calling convention:
saveRow (rowid, succesfunc, url, extraparam, aftersavefunc, onerrorfunc)

where

 rowid: the id of the row to save
 succesfunc: if defined, this function is called immediately after the request is successful. To this

function is passed the data returned from the server. Depending on the data from server this
function should return true or false.

 url: if defined, this parameter replaces the editurl parameter from options array. If set to
clientArray, the data is not posted to the server but is saved only to the grid (presumably for later
manual saving).

 extraparam: an array of type name: value. When set these values are posted along with the

other values to the server.
 aftersavefunc: if defined, this function is called after the data is saved to the server. Parameters

passed to this function are the rowid and the result from the request.
 onerrorfunc: if defined, this function is called after the data is saved to the server. Parameters

passed to this function are the rowid and the result from the request.

Except when url (or editurl) is 'clientArray', when this method is called, the data from the particular row
is POSTED to the server in format name: value, where the name is a name from colModel and the value
is the new value. jqGrid also adds, to the posted data, the pair id: rowid. For example,

Editing jqGrid

- 83 -

jQuery("#grid_id").saveRow("rowid", false);

will save the data to the grid and to the server, while
jQuery("#grid_id").saveRow("rowid", false, 'clientArray');

will save the data to the grid without an ajax call to the server.

restoreRow

Calling convention:
restoreRow(rowid)

where

 rowid is the row to restore

This method restores the data to original values before the editing of the row.

Example

<html>

<head>

<script type="text/javascript">

jQuery(document).ready(function(){

 var lastsel2

 jQuery("#rowed5").jqGrid({

 datatype: "local",

 height: 250,

 colNames:['ID Number','Name', 'Stock', 'Ship via','Notes'],

 colModel:[

 {name:'id',index:'id', width:90, sorttype:"int", editable: true},

 {name:'name',index:'name', width:150,editable: true, editoptions:{size:"20",maxlength:"30"}},

 {name:'stock',index:'stock', width:60, editable: true, edittype:"checkbox",editoptions:

{value:"Yes:No"}},

 {name:'ship',index:'ship', width:90, editable: true, edittype:"select",

editoptions:{value:"FE:FedEx;IN:InTime;TN:TNT;AR:ARAMEX"}},

 {name:'note',index:'note', width:200, sortable:false,editable: true,edittype:"textarea",

editoptions:{rows:"2",cols:"10"}}

],

 onSelectRow: function(id){

 if(id && id!==lastsel2){

 jQuery('#rowed5').restoreRow(lastsel2);

 jQuery('#rowed5').editRow(id,true);

 lastsel2=id;

 }

 },

 editurl: "server.php",

 caption: "Input Types"

 });

 var mydata2 = [

 {id:"12345",name:"Desktop Computer",note:"note",stock:"Yes",ship:"FedEx"},

 {id:"23456",name:"Laptop",note:"Long text ",stock:"Yes",ship:"InTime"},

 {id:"34567",name:"LCD Monitor",note:"note3",stock:"Yes",ship:"TNT"},

 {id:"45678",name:"Speakers",note:"note",stock:"No",ship:"ARAMEX"},

 {id:"56789",name:"Laser Printer",note:"note2",stock:"Yes",ship:"FedEx"},

 {id:"67890",name:"Play Station",note:"note3",stock:"No", ship:"FedEx"},

 {id:"76543",name:"Mobile Telephone",note:"note",stock:"Yes",ship:"ARAMEX"},

 {id:"87654",name:"Server",note:"note2",stock:"Yes",ship:"TNT"},

 {id:"98765",name:"Matrix Printer",note:"note3",stock:"No", ship:"FedEx"}

];

 for(var i=0;i"#rowed5").addRowData(mydata2[i].id,mydata2[i]);

});

</script>

</head>

<body>

<table id="rowed5" class="scroll"></table>

</body>

</html>

Editing jqGrid

- 84 -

Will produce the following:

Form Editing

jqGrid supports creating a form, on the fly, to enter or edit grid data.

To do this we need to enable this feature. For more information refer to Installation

Properties

All the properties of the grid are the same as these for Inline editing -- see Inline Editing: Properties --
with the addition of the following option in the colModel:

editrules
Calling Convention:

{edithidden:true(false), required:true(false), number:true(false), minValue:val, maxValue:val,

email:true(false)}

With this option we can:

1. edit, in the form, fields that are hidden in the grid. If the field is hidden in the grid and edithidden
is set to true, the field can be edited when add or edit methods are called.

2. perform a client-side validation in the formedit. This is done with:
o required: true(false) - if set to true, the value will be checked and if empty, an error

message will be displayed.
o number: true(false) - if set to true, the value will be checked and if this is not a number,

an error message will be displayed.
o minValue: valid number - if set, the value will be checked and if the value is less than this,

an error message will be displayed.
o maxValue: valid number - if set, the value will be checked and if the value is more than

this, an error message will be displayed.

Editing jqGrid

- 85 -

o email: true(false) - if set to true, the value will be checked and if this is not valid e-mail,

an error message will be displayed.

Methods

Method Parameters Description

hide none Hides a row, identified as "tr_fieldname" on the edit form.
 $("#tr_fieldname",formid).hide()

where fieldname is the name of the column in the grid, and formid is the
name of the form

show none Shows a row on the edit form.
 $("#tr_fieldname",formid).show()

where fieldname is the name of the column in the grid, and formid is the
name of the form

Add Row

The editGridRow method is also used to add data to the server, by passing "new" as the rowid.

This method uses colModel and editurl parameters from jqGrid

Calling Convention:

jQuery("#grid_id").editGridRow("new", options);

The options are the same as those in Edit row.

Notes

jqGrid adds two parameters to the values that are posted to the server:

 id = empty and

 oper = add

to identify to the server that the operation is an insert.

Edit Row

This method is the same as inline editing except that the data is represented in form via modal dialog.

This method uses colModel and editurl properties from jqGrid

Calling Convention:

jQuery("#grid_id").editGridRow(rowid, properties);

where

Editing jqGrid

- 86 -

 grid_id: the id of the parent grid

 rowid: the id of the row to edit
 properties: an array of name: value pairs, including any of the following properties or events.

Properties

Property Description Default

top the initial top position of confirmation dialog 0

left the initial left position of confirmation dialog 0

width the width of confirmation dialog 300

height the height of confirmation dialog 200

modal sets dialog in modal mode false

drag the dialog is dragable true

msg message to display when deleting the row "Delete selected
row(s)"

addCaption the caption of the dialog if the mode is adding "Add Record"

editCaption the caption of the dialog if the mode is editing "Edit Record"

bSubmit the text of the button when you click to delete "Submit"

bCancel the text of the button when you click to close dialog "Cancel"

url url where to post data. If set, replaces the editurl

processData Words displayed when posting data "Processing..."

addedrow Controls where the row just added is placed: 'first' at the

top of the gird, 'last' at the bottom. Where the new row is
to appear in its natural sort order, set reloadAfterSubmit:
true

'first'

closeAfterAdd when add mode, close the dialog after add record false

clearAfterAdd when add mode, clear the data after adding data true

closeAfterEdit when in edit mode, close the dialog after editing

reloadAfterSubmit reload grid data after posting true

mtype Defines the type of request to make ("POST" or "GET")
when data is sent to the server

"POST"

editData an array used to add content to the data posted to the

server

empty

recreateForm when set to true the form is recreated every time false

Editing jqGrid

- 87 -

Events

Event Description

onInitializeForm fires once when creating the data for editing and adding. Receives, as
parameter, the id of the constructed form.

beforeInitData fires before initialize the form data. Receives, as parameter, the id of the
constructed form.

beforeShowForm fires before showing the form; receives as Parameter the id of the
constructed form.

afterShowForm fires after showing the form; receives as Parameter the id of the
constructed form.

beforeSubmit fires before the data is submitted to the server. Parameter is of type
id=value1,value2,... When called the event can return array where the
first parameter can be true or false and the second is the message of the

error if any. Example:
[false,"The value is not valid"]

onclickSubmit fires after the submit button is clicked and the postdata is constructed.
Parameters passed to this event is a options array of the method. The

event should return array of type {} which then replaces the data of
editData. See example below.

afterSubmit fires after response has been received from server. Typically used to
display status from server (e.g., the data is successfully saved or the save

cancelled for server-side editing reasons). Receives as parameters the
data returned from the request and an array of the posted values of type
id=value1,value2

afterComplete This event fires immediately after all actions and events are completed

and the row is inserted or updated in the grid.
afterComplete(serverResponse, postdata, formid) where

 response is the data returned from the server (if any)
 postdata an array, is the data sent to the server
 formid is the id of the form

onclickPgButtons This event can be used only when we are in edit mode; it fires

immediately after the previous or next button is clicked, before leaving the
current row, allowing working with (e.g., saving) the currently loaded
values in the form.
onclickPgButtons(whichbutton, formid, rowid)

where

 whichbutton is either 'prev' or 'next'
 formid is the id of the form

 rowid is the id of the current row

afterclickPgButtons This event can be used only when we are in edit mode; it fires after the
data for the new row is loaded from the grid, allowing modification of the

data or form before the form is redisplayed.
afterclickPgButtons(whichbutton, formid, rowid)

where

Editing jqGrid

- 88 -

 whichbutton is either 'prev' or 'next'
 formid is the id of the form
 rowid is the id of the current row

Notes & Examples

If the top and left off-set properties are not set, the dialog appears at the upper left corner of the grid.
Top and left off-sets are in relation to the viewing window, not the grid, so {top:10, left:10} will be

indented slightly from the window, and may be nowhere near the grid. With some browsers, in instances
where the grid is contained in a scrolling div, this may be the only way to make sure the form appears
where you want it.

For ease in manipulating the elements in an edit form, every table row in the form that holds the data
for the edit has a id which is a combination of "tr_" + name (from colmodel).

Example:

<form>

<table>

<tr id='tr_myfield'>

 <td> Caption</td> <td>edited element named, in colModel, as "myfield"</td>

</tr>

...

</table>

</form>

This allow us to easily show or hide some table rows depending on conditions.

jqGrid adds two parameters to the values that are posted to the server:

 id=rowid and

 oper=edit

to identify to the server that the operation is an update.

We can set common options for all add and/or edit dialogs using the $.jgrid.edit object with $.extend().

The default values are:

jQuery.jgrid.edit = {

 addCaption: "Add Record",

 editCaption: "Edit Record",

 bSubmit: "Submit",

 bCancel: "Cancel",

 processData: "Processing...",

 msg: {

 required:"Field is required",

 number:"Please enter valid number!",

Editing jqGrid

- 89 -

 minValue:"value must be greater than or equal to ",

 maxValue:"value must be less than or equal to"

 }

};

Using onclickSubmit:

This feature can be used to add data to that which is to be sent to the server.

Static method (can be used in navigator too)

jQuery("#grid_id").editGridRow("rowid",{editData:{myname:"myvalue"}});

Every time when the data is sent to the server this pair will be added to the postdata.

If we want to dynamically add data to that sent to the server, we can use something like the following:

onclickSubmit : function(eparams) {

 var retarr = {};

 // we can use all the grid methods here

 //to obtain some data

 var sr = jQuery("#grid_id").getGridParam('selrow');

 rowdata = jQuery("#grid_id").getRowData(sr);

 if(rowdata.somevalue=='aa') {

 retarr = {myname:"myvalue"};

 }

 return retarr;

}

If the condition is true the pair myname:myvalue will be sent to the server when you click submit.

Delete Row

With this method we can perform a delete operation at server side.

This method uses colModel and editurl parameters from jqGrid

Calling Convention:

jQuery("#grid_id").delGridRow(row_id_s, options);

where

 grid_id: the id of the parent grid

 row_id_s: the id of the row(s) to delete; can be a single value or list of ids separated by comma
 options: an array of name: value pairs, including any of the following properties or events.

Properties

Property Description Default

top the initial top position of confirmation dialog 0

Editing jqGrid

- 90 -

left the initial left position of confirmation dialog 0

width the width of confirmation dialog 300

height the height of confirmation dialog 200

modal sets dialog in modal mode false

drag the dialog is dragable true

msg message to display when deleting the row "Delete selected
row(s)"

caption the caption of the dialog "Delete Record"

bSubmit the text of the button when you click to delete "Delete"

bCancel the text of the button when you click to close dialog "Cancel"

url url where to post data. If set, replaces the editurl

reloadAfterSubmit reload grid data after posting true

delData an array used to add content to the data posted to
the server

empty

Events

Event Description Default

beforeShowForm fires before showing the form; receives as Parameter the id of the
constructed form.

null

afterShowForm fires after showing the form; receives as Parameter the id of the

constructed form.

null

beforeSubmit fires before the data is submitted to the server. Parameter is of type
id=value1,value2,... When called the event can return array where
the first parameter can be true or false and the second is the

message of the error if any. Example:
[false,"The value is not valid"]

null

onclickSubmit fires after the submit button is clicked and the postdata is
constructed. Parameters passed to this event is a options array of
the method. The event should return array of type {} which then
replaces the data of delData. See example below.

null

afterSubmit fires after response has been received from server. Typically used to
display status from server (e.g., the data is successfully deleted or

deletion cancelled for referential integrity reasons). Receives as
parameters the data returned from the request and an array of the
posted values of type id=value1,value2

null

Notes & Examples

If the top and left off-set properties are not set, the dialog appears at the upper left corner of the grid.
Top and left off-sets are in relation to the viewing window, not the grid, so {top:10, left:10} will be

indented slightly from the window, and may be nowhere near the grid.

We can set common options for all delete dialogs using the $.jgrid.del object with $.extend().

The default values are:

Editing jqGrid

- 91 -

jQuery.jgrid.del = {

 caption: "Delete",

 msg: "Delete selected record(s)?",

 bSubmit: "Delete",

 bCancel: "Cancel",

 processData: "Processing..."

};

Using onclickSubmit:

This feature can be used to add data to that which is to be sent to the server.

Static method (can be used in navigator too)

jQuery("#grid_id").delGridRow("rowid",{delData:{myname:"myvalue"}});

Every time when the data is sent to the server this pair will be added to the postdata.

If we want to dynamically add data to that sent to the server, we can use something like the following:

onclickSubmit : function(eparams) {

 var retarr = {};

 // we can use all the grid methods here

 //to obtain some data

 var sr = jQuery("#grid_id").getGridParam('selrow');

 rowdata = jQuery("#grid_id").getRowData(sr);

 if(rowdata.somevalue=='aa') {

 retarr = {myname:"myvalue"};

 }

 return retarr;

}

If the condition is true the pair myname:myvalue will be sent to the server when you click submit.

Advanced Grids jqGrid

- 92 -

Advanced Grids

Sometimes the basic grid just isn't enough.

You might want to use jqGrid to build report specs by selecting a number of items from a single table to
include in the report. Or you might want to use jqGrid as a mover where you can select a number of

items in one grid and move them to another, for reconciling an account, for example. Multiselect grids
are ideal for those purposes.

And there are times when you might need to deal with data within a parent-and-child structure: jqGrid
offers three ways of doing that, as Subgrids, Master/Detail grids, and Treegrids, the last of which lets
you drill down even further, past the Children to the Grandchildren, and beyond.

Multiselect Grids

Multiselection is a way to select more than one row in the grid so that some action can be performed on
all of them at once.

Using Multiselect

Multiselect uses these three properties from the basic grid:

Property Type Description Default

multiselect boolean If set to true, an additional column is added on the left side of the

grid. This adds 28px to the grid's width. When the grid is constructed
the content of this column is filled with a check box element. When
we select a row the check box's state becomes checked (unless
multiboxonly has been set to true, the row can be clicked anywhere

on the row, not just in the checkbox). When we select another row
the previous row does not change its state. When we click on a row
that is selected, the state becomes unchecked and the row is
unselected. (If onRightClickRow has been defined, then right-clicking

a row does not select the row).

false

multiboxonly boolean If multiboxonly is set to true, then a row is selected only when the
checkbox is clicked (Yahoo style).

false

multikey string When we want selection to occur only when the user holds down a

specific key (when clicking), we define that key here. The possible
values are: 'shiftKey', 'altKey', and 'ctrlKey'. For example,
multikey: 'altKey'
will ensure that multiselection occurs only when the user holds down

the "Alt" key.

empty

Advanced Grids jqGrid

- 93 -

Example

As seen in the figure above, in the header layer we have a common check box. When we check this box
all the rows will be selected. When we uncheck this box, all the rows are unchecked.

Identifying the Selected Rows

To obtain selected rows we can use getGridParam('selarrrow') method. Using our example we can write
this

jQuery("#grid_id").getGridParam('selarrrow');

which will return an array with the selected rows (i.e., ["11","9"] from the figure above). The values in
array are the id's of the selected rows.

To retrieve a single row, the last one selected, we can use getGridParam(selrow)

jQuery("#grid_id").getGridParam('selrow');

This returns the id of the last selected row as a scalar value.

Dynamically Enabling and Disabling Multiselect

To dynamically disable multiselect:

jQuery("#grid_id").setGridParam({multiselect:false}).hideCol('cb');

to enable multi-select:
jQuery("#grid_id").setGridParam({multiselect:true}).showCol('cb');

Where

 grid_id is to be replaced by the name of your grid, but

 cb is a keyword, not to be replaced

Advanced Grids jqGrid

- 94 -

To make this work, multiselect must be initially set to true in the jqGrid properties; only then can we

enable and disable it using the code above.

Subgrids

There are times when we need to be able to easily display (or edit) records that are the children of a
selected record in the parent grid. We would, of course, want to show only those records that are the
children of the selected record in the grid, never the children of all records.

jqGrid offers two ways of handling child records:

1. a subGrid

2. a grid as a subGrid

SubGrids use the following properties, events and methods of the parent grid.

Properties

Property Type Description Default

subGrid boolean If set to true this enables using a subgrid. If the subGrid is enabled
a additional column at left side is added to the basic grid. This
column contains a 'plus' image which indicate that the user can click

on it to expand the row. By default all rows are collapsed.

false

subGridModel array This property, which describes the model of the subgrid, has an
effect only if the subGrid property is set to true. It is an array in
which we describe the column model for the subgrid data. The

syntax is
subGridModel : [

{ name : ['name_1','name_2',...,'name_n'],

 width : [width_1,width_2,...,width_n] ,

 params : [param_1,...,param_n]}

]

where

 name: an array containing the labels of the columns of the

subgrid.
 width: an array containing the width of the columns. This

array should have the same length as in name array.
 params: an array in which we can add a name from main

grid's colModel to pass as additional parameter to the

subGridUrl.

empty
array

subGridType This option allow loading subgrid as a service. If not set, the

datatype parameter of the parent grid is used. For example:

jQuery("#mygrid").jqGrid({

 ...

subgridtype: function(rowidprm) {

 jQuery.ajax({

 url:'url_to_the_service',

 data:rowidprm,

 dataType:"json",

 complete: function(jsondata,stat){

 if(stat=="success") {

Advanced Grids jqGrid

- 95 -

 var thegrid = jQuery("#listdt")[0];

thegrid.subGridJson(eval("("+jsondata.responseText+")"),

rowidprm.id);

 }

 }

 });

 }

 });

Where rowidprm is array that contains the id of the row plus other
parameters as required to set subGridModel params.

subGridUrl string This option has effect only if subGrid option is set to true. This

option points to the file from which we get the data for the subgrid.
jqGrid adds the id of the row to this url as parameter. If there is a
need to pass additional parameters, use the params option in
subGridModel

empty

string

Events

Event Parameters Description

subGridRowExpanded pID, id This event is raised when the subgrid is enabled and is executed
when the user clicks on the plus icon of the grid. Can be used to

put custom data in the subgrid.

 pID is the unique id of the div element where we can put
contents when subgrid is enabled,

 id is the id of the row

subGridRowColapsed pID, id This event is raised when the user clicks on the minus icon.

 pID is the unique id of the div element where we can put
contents when subgrid is enabled,

 id is the id of the row

Methods

Method Parameters Returns Description

expandSubgridRow rowid jqGrid
object

dynamically expand the subgrid row with the id =
rowid

collapseSubGridRow rowid jqGrid

object

dynamically collapse the subgrid row with the id =

rowid

toggleSubGridRow rowid jqGrid
object

dynamically toggle the subgrid row with the id =
rowid

subGridJson json, sid jqGrid

Advanced Grids jqGrid

- 96 -

object

subGridXml xml, subid jqGrid
object

A Subgrid

Using a subGrid is the easiest method for displaying data from child records, as shown in this sample:

Clicking on the plus or minus icons beside each "parent" record reveals or hides the associated "child"
records.

But this approach does have limitations: data in a subgrid cannot be sorted, or edited, and the alignment

of the data in the columns is always "left". If you need more power than what this offers, then consider
using a grid as a subgrid or, even, Master/Detail grids. But for a quick way to display details, follow the
method described here.

subGridModel

The data described in the subgrid model must be mapped by either xmlReader or jsonReader. For xml
data, the mapping would follow this example:

xmlReader : {

root: "rows",

row: "row",

page: "rows>page",

total: "rows>total",

records : "rows>records",

repeatitems: true,

cell: "cell",

id: "[id]",

subgrid: {root: "rows", row: "row", repeatitems: true, cell: "cell"}

}

and for json mapping, like the following:

Advanced Grids jqGrid

- 97 -

jsonReader : {

root: "rows",

page: "page",

total: "total",

records: "records",

repeatitems: true,

cell: "cell",

id: "id",

subgrid: {root: "rows", repeatitems: true, cell: "cell"}

}

The mapping rules are the same as those in the basic grid.

For more information see the discussion of xml and JSON in Data Types.

An Example

Continuing to use the example from the tutorial, let's suppose that there is a need to display the line
items for each invoice in a subgrid. The Java script code should look like this.

<script type="text/javascript">

jQuery(document).ready(function(){

 jQuery("#list").jqGrid({

 url:'example.php',

 datatype: 'xml',

 colNames:['Inv No', 'Date', 'Amount', 'Tax', 'Total', 'Notes'],

 colModel :[

 {name:'invid', index: 'invid', width: 55},

 {name:'invdate', index: 'invdate', width: 90},

 {name:'amount', index: 'amount', width: 80, align: 'right'},

 {name:'tax', index: 'tax', width: 80, align: 'right'},

 {name:'total', index: 'total', width: 80,align: 'right'},

 {name:'note', index: 'note', width: 150, sortable: false}],

 pager: jQuery('#pager'),

 rowNum:10,

 rowList:[10,20,30],

 sortname: 'id',

 sortorder: "desc",

 viewrecords: true,

 imgpath: 'themes/basic/images',

 caption: “My first grid,

 subGrid: true,

 subGridUrl : "subgrid.php",

 subGridModel [{

 name: ['No', 'Item', 'Qty', 'Unit', 'Line Total'],

 width : [55, 200, 80, 80, 80],

 params: ['invdate'] }

]

 });

});

</script>

The next step is to configure the subgrid.php file. The example is in PHP and MySQL

<?php

// get the id passed automatically to the request

$id = $_GET['id'];

// get the invoice data passed to this request via params array in

//subGridModel. We do not use it here - this is only demostration

$date_inv = $_GET['invdate'];

Advanced Grids jqGrid

- 98 -

// connect to the database

$db = mysql_connect($dbhost, $dbuser, $dbpassword) or die("Connection Error: " . mysql_error());

mysql_select_db($database) or die("Error conecting to db.");

// construct the query

$SQL = "SELECT num, item, qty, unit FROM invlines WHERE id=".$id." ORDER BY item";

$result = mysql_query($SQL) or die("Couldn?t execute query.".mysql_error());

// set the header information

if (stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {

 header("Content-type: application/xhtml+xml;charset=utf-8");

} else {

 header("Content-type: text/xml;charset=utf-8");

}

echo "<?xml version='1.0' encoding='utf-8'?>";

echo "<rows>";

// be sure to put text data in CDATA

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 echo "<row>";

 echo "<cell>". $row[num]."</cell>";

 echo "<cell><![CDATA[". $row[item]."]]></cell>";

 echo "<cell>". $row[qty]."</cell>";

 echo "<cell>". $row[unit]."</cell>";

 echo "<cell>". number_format($row[qty]*$row[unit],2,'.',' ')."</cell>";

 echo "</row>";

}

echo "</rows>";

?>

After this, the grid will look like the example at the top of this page.

Dynamically Enabling or Disabling a Subgrid

A subGrid can be enabled (or disabled) dynamically (to respond to changes in the data in the main grid,
for example).

To disable a subgrid:

$("#grid_id").hideCol('subgrid');

to enable a subgrid:
$("#grid_id").showCol('subgrid');

Where

 grid_id is to be replaced by the name of your grid, but

 subgrid is a keyword, not to be replaced

To make this work, subGrid must be initially set to true in the jqGrid properties; only then can we enable

and disable it using the code above.

Advanced Grids jqGrid

- 99 -

A Grid as Subgrid

In this alternative to a subGrid, we use the subGrid functions of the main grid to create not a subGrid,
but another grid, with all of the power and capacity of the main grid but appearing, as before, under the

"parent" record with the same ability to reveal and hide it.

Note that in this sample, the focus is on the second "child" row, something that cannot be done in a true
subGrid, and that the numeric columns are now right-aligned.

Defining a Grid as a subGrid

We use two events described in options array: subGridRowExpanded and subGridRowColapsed [note the
unconventional spelling].

When these events are defined the population of the data in the subgrid is not executed. This way we
can use the subGridUrl to get our custom data and put it into the expanded row. Having this it is easy to
construct another grid which will act as subgrid.

Here is this technique. We again use our example.

<script type="text/javascript">

jQuery("#listsg11").jqGrid({

 url:'example.php',

 datatype: "xml",

 height: 200,

 colNames:['Inv No','Date', 'Amount','Tax','Total','Notes'],

 colModel :[

 {name:'invid',index:'invid', width:55},

 {name:'invdate',index:'invdate', width:90},

 {name:'amount',index:'amount', width:80, align:'right'},

 {name:'tax',index:'tax', width:80, align:'right'},

 {name:'total',index:'total', width:80,align:'right'},

 {name:'note',index:'note', width:150, sortable:false}],

 rowNum:8,

 rowList:[8,10,20,30],

 imgpath: gridimgpath,

 pager: jQuery('#pager'),

 sortname: 'id',

 viewrecords: true,

Advanced Grids jqGrid

- 100 -

 sortorder: "desc",

 subGrid: true,

 subGridRowExpanded: function(subgrid_id, row_id) {

 // we pass two parameters

 // subgrid_id is a id of the div tag created within a table

 // the row_id is the id of the row

 // If we want to pass additional parameters to the url we can use

 // the method getRowData(row_id) - which returns associative array in type name-value

 // here we can easy construct the following

 var subgrid_table_id;

 subgrid_table_id = subgrid_id+"_t";

 jQuery("#"+subgrid_id).html("<table id='"+subgrid_table_id+"' class='scroll'></table>");

 jQuery("#"+subgrid_table_id).jqGrid({

 url:"subgrid.php?q=2&id="+row_id,

 datatype: "xml",

 colNames: ['No','Item','Qty','Unit','Total'],

 colModel: [

 {name:"num",index:"num",width:80,key:true},

 {name:"item",index:"item",width:130},

 {name:"qty",index:"qty",width:80,align:"right"},

 {name:"unit",index:"unit",width:80,align:"right"},

 {name:"total",index:"total",width:100,align:"right",sortable:false}

],

 height: 100%,

 rowNum:20,

 imgpath: gridimgpath,

 sortname: 'num',

 sortorder: "asc"

 })

 }

});

</script>

Note that subGridRowColapsed is not defined. This is true because when the row is collapsed the
contents of the div tag are removed.

Master/Detail Grids

If having the child records inermingled with the parent records is not important to you, then present two
separate grids and synchronize the contents of the second (the 'Detail' grid) with the selected row of the
'Master' grid.

This is a technique for handling parent and child records, similar to a subGrid, but it is not a type of
subGrid and it does not use any of the subGrid properties, events or methods.

Advanced Grids jqGrid

- 101 -

Again, the Detail grid is a full-feature grid: you can do whatever you want with it in terms of
configuration and function.

Defining Master/Details Grids

First, define two grids in your HTML; in our example, Invoice Header and Invoice Detail (the ids used
here are not significant, you can call them whatever you want):

<table id="master" class="scroll"></table>

<div id="pagermaster" class="scroll" style="text-align:center;"></div>

<table id="detail" class="scroll"></table>

<div id="pagerdetail" class="scroll" style="text-align:center;"></div>

Then, in the definition of your Master grid, add the following, which says that whenever a row is selected
in the Master grid, the Details grid is sychronized.

onSelectRow: function(id) {

 if(id == null) {

 id=0;

 if(jQuery("#details").getRecords()>0) {

 jQuery("#details").setGridParam({url:"subgrid.php?q=1&id="+id,page:1}).trigger("reloadGrid");

 }

 } else {

 jQuery("#details").setGridParam(url:"subgrid.php?q=1&id="+id,page:1).trigger("reloadGrid);

 }

 }

Notice this passes the id of the Master row to be used as a parameter in the url to retrieve the Details
data. The value of the setGridParam({url: subgrid.php?q=1... }) property, of course, will need to be
changed to meet your needs.

Advanced Grids jqGrid

- 102 -

Notice also how setGridParam is used to set two parameters of the grid at once (the url and the page
number) and how triggering the grid reload is chained.

Now these grids can be defined and operated independently while still being co-ordinated.

Treegrids

To enable this feature, ensure grid.treegrid.js is loaded. For more information refer to Installation

Treegrid supports both the Nested Set model and the Adjacency model. Good articles describing the
Nested Set model can be found here:

 http://dev.mysql.com/tech-resources/articles/hierarchical-data.html

 http://www.sitepoint.com/article/hierarchical-data-database/

Configuration options

 treeGridModel: nested/adjacency
 treeGrid: true/false
 expandColumn: valid name from colmodel

 tree_root_level: integer => 0

This feature uses the following properties and methods of the basic grid.

Properties

Property Type Description Default

treeGrid boolean Enables (disables) tree grid. When this option is set to true, the
following features are disabled:

 subGrid
 multiselect
 pager elements -- buttons, etc. -- (but not the pager itself)
 altRows

true

treeModel string 'nested' or 'adjacency' 'nested'

treeReader array extends the colModel defined in the basic grid. The fields
described here are added to end of the colModel array and are
hidden. This means that the data returned from the server should

have values for these fields. For a full description of all valid
values see treeReader properties.

empty
array

Methods

Method Parameters Description

collapseNode record Collapse the node at specified record

http://dev.mysql.com/tech-resources/articles/hierarchical-data.html
http://www.sitepoint.com/article/hierarchical-data-database/

Advanced Grids jqGrid

- 103 -

collapseRow record Collapse the current row

delTreeNode rowid Where rowid is the id of the row. Deletes the specified node
and all child nodes of that node

expandNode record Expand the node at the specified record

expandRow record Expand the current row

getInd object,
rowid, rc

where object is the current set of grid rows (returned from
jQuery("grid_id).rows); rowid is the id of the row; and rc
should be set to true

getNodeAncestors record returns the ancestors of the specified record

getNodeDepth record returns the depth of the specified record

getNodeParent record Returns the parent node of the specified record

getNodeChildren record Returns the child nodes of the specified record; returns empty

array if none

getRootNodes none Returns an array of the current root nodes

isNodeLoaded record Returns true if the node is already loaded

isVisibleNode record Returns true or false if the node is visible or not

setTreeRow rowid, data this method is just like setRowData, but can be used when
treeGrid is enabled. When we use tree grid we should use
setTreeRow instead of setRowData (this will be improved in

the future releases - autodetecting the mode and use only one
method - setRowData)

SortTree direction Direction is 'asc' or 'desc'; sorts the tree with the currently set
sortname (sortname is from grid option)

In the methods above, record means the current record, which can be obtained via the getInd method

Cautions/Limitations

1. Currently adding nodes with addRowData is not supported.

2. Currently it is not recommended to combine inline editing and form editing with treegrid, or the
expanded column will not be editable.

3. Adding nodes is currently not suported.
4. When we initialize the grid and the data is read, the datatype is automatically set to local. This is

required because treegrid supports autoloading tree nodes. This means that, for speed or
efficiency, you can load the data only for the root level first and load the data for a particular child
node only when the operator clicks to expand that node. The grid will determine that there is no
data and try to load the node from the server, but in this case the data that is sent to the server
has to have additional parameters. Setting datatype to local permits intervening before the

request is made to buidl the request correctly.
In this case, postData array would like this:

postData:{nodeid:rc.id,n_left:rc.lft,n_right:rc.rgt,n_level:rc.level}

In other words you can grab these values and do something like this to load the child nodes.

SELECT category_name, level, lft, rgt FROM categories

WHERE lft > n_left AND rgt < n_right AND level = n_level +1

ORDER BY lft;

Once all the nodes are loaded we do not make any other request to the server.

Advanced Grids jqGrid

- 104 -

Known bugs

1. In FF2 and IE when trying to resize the expandable column the tree images are shown - i.e -
wrapping does not resize.

Planned additions

1. expandAll and collapseAll methods
2. autoclosing tree nodes - when clicking on a node all other nodes at this level should be collapsed

automatically and only the one clicked will be expanded
3. addNode method

TreeReader Properties

The treeReader property adds columns to the colModel property of the basic grid.

Syntax:

treeReader: [

 {property1:'value1'},

 {property2:'value2'},

 {...},

 ...

]

These properties, in alphabetic sequence, are the following:

Property Type Description Default

expanded_field string true or false tells us if the tree at this level should be
expanded when read from grid. If this field is true, child nodes

should also be sent to the grid.

false

leaf_field string true or false

left_field numeric

level_field numeric

right_field numeric

It is important to note here that the data returned from the server should be sorted in an appropriate
way; for example

SELECT category_name, level, lft, rgt FROM categories ORDER BY lft;

leaf_field is easy in a Nested set model since
if(rgt == lft+1) isLeaf = true; else isLeaf = false;

Nested Set Model

treeReader : {

 level_field: "level",

Advanced Grids jqGrid

- 105 -

 left_field:"lft",

 right_field: "rgt",

 leaf_field: "isLeaf",

 expanded_field: "expanded"

}

The treeReader automatically extends the colModel with these fields, added and hidden at end of the
colModel. Data returned from the server now needs to include information for these fields for
constructing the tree grid. The treeReader can be extended so that the fields match your requirements.

Field Type Description

level_field number this field determines the level in the hierarchy of the element. Usually
the root element will be at level 0.The first child of the root is at level 1
and so on. This information is needed for the grid to set the ident of

every element.

left_field number rowid of the field to the left

right_field number rowid of the field to the right

leaf_field boolean This field should tell the grid that the element is leaf. Possible values
can be true and false. To the leaf element is attached diffrent image
and this element can not be expanded or collapsed.

expanded_field boolean Tells the grid whether this element should be expanded during the

loading (true or false). If the element has no value, false is set. Note
that the data can be empty for this element, but this element can not
be removed from data set.

The minimum information required to make the nested set model work is rowid, left_field, and right_field

Another otion that can be changed is tree_root_level. By default this has value 0. This option tell which

level has the root element.

Example

Data preparation
Let us suppose that we have an account table where some accounts are children of the main accounts

and some accounts have no child account. In the Nested Set model the table can look like this

account_id, name, account_number, Debit, Credit, Balance, lft, rgt

where:

 account_id is the uniquie id of the account (in our grid this should be the rowid)
 lft indicates the left_field, and

 rgt indicates the right_field

In MySQL terms this table can be represented as
CREATE TABLE accounts (

 account_id int(11) NOT NULL auto_increment,

 name varchar(30) NOT NULL,

 acc_num varchar(10) NULL,

 debit decimal(10,2) default '0.00',

 credit decimal(10,2) default '0.00',

Advanced Grids jqGrid

- 106 -

 balance decimal(10,2) default '0.00',

 lft int(11) NOT NULL,

 rgt int(11) NOT NULL,

 PRIMARY KEY (`account_id`)

);

Let's add some data:

INSERT INTO `accounts` VALUES (1, 'Cash', '100', 400.00, 250.00, 150.00, 1, 8);

INSERT INTO `accounts` VALUES (2, 'Cash 1', '1', 300.00, 200.00, 100.00, 2, 5);

INSERT INTO `accounts` VALUES (3, 'Sub Cash 1', '1', 300.00, 200.00, 100.00, 3, 4);

INSERT INTO `accounts` VALUES (4, 'Cash 2', '2', 100.00, 50.00, 50.00, 6, 7);

INSERT INTO `accounts` VALUES (5, 'Bank''s', '200', 1500.00, 1000.00, 500.00, 9, 14);

INSERT INTO `accounts` VALUES (6, 'Bank 1', '1', 500.00, 0.00, 500.00, 10, 11);

INSERT INTO `accounts` VALUES (7, 'Bank 2', '2', 1000.00, 1000.00, 0.00, 12, 13);

INSERT INTO `accounts` VALUES (8, 'Fixed asset', '300', 0.00, 1000.00, -1000.00, 15, 16);

With this information we can now construct the treeGrid.

Grid preparation
Our minimum configuration can look like this.
jQuery("#treegrid").jqGrid({

 treeGrid: true,

 treeGridModel: 'nested',

 ExpandColumn : 'name',

 url: 'server.php?q=tree',

 datatype: "xml",

 mtype: "POST",

 colNames:["id","Account","Acc Num", "Debit", "Credit","Balance"],

 colModel:[

 {name:'id',index:'id', width:1,hidden:true,key:true},

 {name:'name',index:'name', width:180},

 {name:'num',index:'acc_num', width:80, align:"center"},

 {name:'debit',index:'debit', width:80, align:"right"},

 {name:'credit',index:'credit', width:80,align:"right"},

 {name:'balance',index:'balance', width:80,align:"right"}

],

 height:'auto',

 pager : "#ptreegrid",

 imgpath: 'images',

 caption: "Treegrid example"

});

Since jqGrid currently does not support paging, when we have a treegrid the pager elements are
disabled automatically.

Server side preparation: Loading all at once

Loading all the nodes at once is an approach used when we have relatively few elements in the data
table. To do this, our single SQL can be

SELECT

 node.account_id,

 node.name,

 node.acc_num,

 node.debit,

 node.credit,

 node.balance,

 (COUNT(parent.name) - 1) AS level,

 node.lft,

 node.rgt

FROM accounts AS node,

accounts AS parent

WHERE node.lft BETWEEN parent.lft AND parent.rgt

GROUP BY node.name

ORDER BY node.lft;

Advanced Grids jqGrid

- 107 -

In Nested Set model, determining if the node is a leaf is easy: this is just comparison of rgt = lft+1.

Now we are ready to prepare our server side code. Below are examples in PHP and MySQL, xml and json.
Examine the code to see where additional elements are added.

Using PHP/MySQL
// this query determines the total number of records in the tree (can be omitted)

$result = mysql_query("SELECT COUNT(*) as count FROM accounts");

$row = mysql_fetch_array($result,MYSQL_ASSOC);

$count = $row['count'];

// the actual query

$SQL = "SELECT "

."node.account_id, "

."node.name, "

."node.acc_num, "

."node.debit, "

."node.credit, "

."node.balance, "

."(COUNT(parent.name) - 1) AS level, "

."node.lft, "

."node.rgt "

."FROM accounts AS node, "

."accounts AS parent "

."WHERE node.lft BETWEEN parent.lft AND parent.rgt "

."GROUP BY node.name "

."ORDER BY node.lft";

$result = mysql_query($SQL) or die("Couldn’t execute query.".mysql_error());

Using XML
if (stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {

 header("Content-type: application/xhtml+xml;charset=utf-8");

} else {

 header("Content-type: text/xml;charset=utf-8");

}

$et = ">";

$s = "";

$s .= "<?xml version='1.0' encoding='utf-8'?$et\n";

$s .= "<rows>";

$s .= "<page>1</page>";

$s .= "<total>1</total>";

$s .= "<records>".$count."</records>";

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 $s .= "<row>";

 $s .= "<cell>". $row[account_id]."</cell>"; // the id of the row is setted in colmodel, no need to put id

in row

 $s .= "<cell>". $row[name]."</cell>";

 $s .= "<cell>". $row[acc_num]."</cell>";

 $s .= "<cell>". $row[debit]."</cell>";

 $s .= "<cell>". $row[credit]."</cell>";

 $s .= "<cell>". $row[balance]."</cell>";

 $s .= "<cell>". $row[level]."</cell>"; // level element

 $s .= "<cell>". $row[lft]."</cell>"; // left_field element

 $s .= "<cell>". $row[rgt]."</cell>"; // right_field element

 if($row[rgt] == $row[lft]+1) $leaf = 'true';else $leaf='false'; // this determines if the node is aleaf

 $s .= "<cell>".$leaf."</cell>"; // isLief element

 $s .= "<cell>false</cell>"; // expanded element - we set by default t false

 $s .= "</row>";

}

$s .= "</rows>";

echo $s;

Using Json
header("Content-type: text/html;charset=utf-8");

$response->page = 1;

$response->total = 1;

$response->records = $count;

$i=0;

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 if($row[rgt] == $row[lft]+1) $leaf = 'true';else $leaf='false';

Advanced Grids jqGrid

- 108 -

 $response->rows[$i]['cell']=array($row[account_id],

 $row[name],

 $row[acc_num],

 $row[debit],

 $row[credit],

 $row[balance],

 $row[note],

 $row[level],

 $row[lft],

 $row[rgt],

 $leaf,

 'false'

);

 $i++;

}

echo json_encode($response);

Server side preparation: Auto loading tree

When we have a relative large data set with a deep structure, is is better to load the data when we need
it, i.e. only when a parent is clicked on do we retrieve the child records. So first we display only the root

elements; when a root elemnt is clicked on, the grid automatically detects that there is no data and tries
to load the needed information by passing the needed parameters to the server. This is where the
level_field and isLeaf field are so important.

In this case we can use our previous query producing only the elements at the requested level. (This
query can be optimized, but this is out of scope for this explanantion).

Using Json
$ADDWHERE =";

$node = (integer)$_REQUEST["nodeid"];

// detect if here we post the data from allready loaded tree

// we can make here other checks

if($node >0) {

 $n_lft = (integer)$_REQUEST["n_left"];

 $n_rgt = (integer)$_REQUEST["n_right"];

 $n_lvl = (integer)$_REQUEST["n_level"];

 $ADDWHERE = " AND lft > ".$n_lft." AND rgt < ".$n_rgt;

} else {

 // initial grid

 $n_lvl =0;

}

$SQL1 = "SELECT "

."node.account_id, "

."node.name, "

."node.acc_num, "

."node.debit, "

."node.credit, "

."node.balance, "

."(COUNT(parent.name) - 1) AS level, "

."node.lft, "

."node.rgt "

."FROM accounts AS node, "

."accounts AS parent "

."WHERE node.lft BETWEEN parent.lft AND parent.rgt ".$ADDWHERE

." GROUP BY node.name "

." ORDER BY node.lft";

header("Content-type: text/html;charset=utf-8");

$response->page = 1;

$response->total = 1;

$response->records = $count;

$i=0;

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 if($row[rgt] == $row[lft]+1) $leaf = 'true';else $leaf='false';

 if($n_lvl == $row[level]) { // we output only the needed level

 $response->rows[$i]['cell']=array($row[account_id],

 $row[name],

Advanced Grids jqGrid

- 109 -

 $row[acc_num],

 $row[debit],

 $row[credit],

 $row[balance],

 $row[note],

 $row[level],

 $row[lft],

 $row[rgt],

 $leaf,

 'false'

);

 }

 $i++;

}

echo json_encode($response);

Adjacency Model

To use the Adjacency model, set in grid options
treeModel : 'adjacency'

The default treeReader array for this model is

treeReader = {

 level_field: "level",

 parent_id_field: "parent",

 leaf_field: "isLeaf",

 expanded_field: "expanded"

}

The only diffrence from nested set model is that the left_field and right_field are replaced with
parent_id_field. This element indicates that the record has a parent with an id of parent_id_field. If the

parent id is NULL the element is a root element.

For explanantion of the other fields, see Nested Set model

Example

Data preparation
Let suppose that we have account table where some accounts are children of the main accounts and

some accounts have no child account. In the Adjacency model the table can look like this

account_id, name, account_number, Debit, Credit, Balance, parent_id

where:

 account_id is the uniquie id of the account (in our grid this should be the rowid)
 parent_id indicates the parent_id_field in the grid

In MySQL terms this table can be represented as

CREATE TABLE accounts (

 account_id int(11) NOT NULL auto_increment,

 name varchar(30) NOT NULL,

 acc_num varchar(10) NULL,

 debit decimal(10,2) default '0.00',

 credit decimal(10,2) default '0.00',

 balance decimal(10,2) default '0.00',

Advanced Grids jqGrid

- 110 -

 parent_id int(11) default NULL,

 PRIMARY KEY (`account_id`)

);

Let's add some data

INSERT INTO `accounts` VALUES (1, 'Cash', '100', 400.00, 250.00, 150.00, NULL);

INSERT INTO `accounts` VALUES (2, 'Cash 1', '1', 300.00, 200.00, 100.00, 1);

INSERT INTO `accounts` VALUES (3, 'Sub Cash 1', '1', 300.00, 200.00, 100.00, 2);

INSERT INTO `accounts` VALUES (4, 'Cash 2', '2', 100.00, 50.00, 50.00, 1);

INSERT INTO `accounts` VALUES (5, 'Bank''s', '200', 1500.00, 1000.00, 500.00,NULL);

INSERT INTO `accounts` VALUES (6, 'Bank 1', '1', 500.00, 0.00, 500.00, 5);

INSERT INTO `accounts` VALUES (7, 'Bank 2', '2', 1000.00, 1000.00, 0.00, 5);

INSERT INTO `accounts` VALUES (8, 'Fixed asset', '300', 0.00, 1000.00, -1000.00, NULL);

With this information we can now construct the treeGrid.

Grid configuration
jQuery("#treegrid").jqGrid({

 treeGrid: true,

 treeGridModel: 'adjacency',

 ExpandColumn : 'name',

 url: 'server.php?q=tree',

 datatype: "xml",

 mtype: "POST",

 colNames:["id","Account","Acc Num", "Debit", "Credit","Balance"],

 colModel:[

 {name:'id',index:'id', width:1,hidden:true,key:true},

 {name:'name',index:'name', width:180},

 {name:'num',index:'acc_num', width:80, align:"center"},

 {name:'debit',index:'debit', width:80, align:"right"},

 {name:'credit',index:'credit', width:80,align:"right"},

 {name:'balance',index:'balance', width:80,align:"right"}

],

 height:'auto',

 pager : "#ptreegrid",

 imgpath: 'images',

 caption: "Treegrid example"

});

Server side preparation: Loading all the nodes at once

Loading all the nodes at once works well when we have relatively few elements and the tree has only a

few levels.

Loading data in the Adjacency model is little difficult, since it requires recursion and, where the depth of
the tree is great, this will take a lot of time. There are some techniques that overcome this problem, but

in our case we will use the standard approach. Autoloading tree nodes (desscribed below) is much
simpler and does not require recursion.

Using XML
// First we need to determine the leaf nodes

$SQLL = "SELECT t1.account_id FROM accounts AS t1 LEFT JOIN accounts as t2 "

." ON t1.account_id = t2.parent_id WHERE t2.account_id IS NULL";

$result = mysql_query($SQLL) or die("Couldn t execute query.".mysql_error());

$leafnodes = array();

while($rw = mysql_fetch_array($result,MYSQL_ASSOC)) {

 $leafnodes[$rw[account_id]] = $rw[account_id];

}

// Recursive function that do the job

function display_node($parent, $level) {

 global $leafnodes;

Advanced Grids jqGrid

- 111 -

 if($parent >0) {

 $wh = 'parent_id='.$parent;

 } else {

 $wh = 'ISNULL(parent_id)';

 }

 $SQL = "SELECT account_id, name, acc_num, debit, credit, balance, parent_id FROM accounts WHERE ".$wh;

 $result = mysql_query($SQL) or die("Couldn t execute query.".mysql_error());

 while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 echo "<row>";

 echo "<cell>". $row[account_id]."</cell>";

 echo "<cell>". $row[name]."</cell>";

 echo "<cell>". $row[acc_num]."</cell>";

 echo "<cell>". $row[debit]."</cell>";

 echo "<cell>". $row[credit]."</cell>";

 echo "<cell>". $row[balance]."</cell>";

 echo "<cell>". $level."</cell>";

 if(!$row[parent_id]) $valp = 'NULL'; else $valp = $row[parent_id]; // parent field

 echo "<cell><![CDATA[".$valp."]]></cell>";

 if($row[account_id] == $leafnodes[$row[account_id]]) $leaf='true'; else $leaf = 'false'; // isLeaf

comparation

 echo "<cell>".$leaf."</cell>"; // isLeaf field

 echo "<cell>false</cell>"; // expanded field

 echo "</row>";

 // recursion

 display_node((integer)$row[account_id],$level+1);

 }

}

if (stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {

 header("Content-type: application/xhtml+xml;charset=utf-8");

} else {

 header("Content-type: text/xml;charset=utf-8");

}

$et = ">";

echo "<?xml version='1.0' encoding='utf-8'?$et\n";

echo "<rows>";

echo "<page>1</page>";

echo "<total>1</total>";

echo "<records>1</records>";

// Here we call the function at root level

display_node('',0);

echo "</rows>";

Server side preparation: Auto loading tree

Auto loading the tree is the recommeded approach when using adjacency model in jqGrid. Here, we can
make simple query without any need to provide for recursion.

Using XML
// We need first to determine the leaf nodes

$SQLL = "SELECT t1.account_id FROM accounts AS t1 LEFT JOIN accounts as t2 "

 ." ON t1.account_id = t2.parent_id WHERE t2.account_id IS NULL";

$resultl = mysql_query($SQLL) or die("Couldn t execute query.".mysql_error());

$leafnodes = array();

while($rw = mysql_fetch_array($resultl,MYSQL_ASSOC)) {

 $leafnodes[$rw[account_id]] = $rw[account_id];

}

// Get parameters from the grid

$node = (integer)$_REQUEST["nodeid"];

$n_lvl = (integer)$_REQUEST["n_level"];

if (stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {

 header("Content-type: application/xhtml+xml;charset=utf-8");

} else {

 header("Content-type: text/xml;charset=utf-8");

}

$et = ">";

echo "<?xml version='1.0' encoding='utf-8'?$et\n";

echo "<rows>";

echo "<page>1</page>";

Advanced Grids jqGrid

- 112 -

echo "<total>1</total>";

echo "<records>1</records>";

if($node >0) { check to see which node to load

 $wh = 'parent_id='.$node; // parents

 $n_lvl = $n_lvl+1; // we should ouput next level

} else {

 $wh = 'ISNULL(parent_id)'; // roots

}

$SQL = "SELECT account_id, name, acc_num, debit, credit, balance, parent_id FROM accounts WHERE ".$wh;

$result = mysql_query($SQL) or die("Couldn t execute query.".mysql_error());

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

 echo "<row>";

 echo "<cell>". $row[account_id]."</cell>";

 echo "<cell>". $row[name]."</cell>";

 echo "<cell>". $row[acc_num]."</cell>";

 echo "<cell>". $row[debit]."</cell>";

 echo "<cell>". $row[credit]."</cell>";

 echo "<cell>". $row[balance]."</cell>";

 echo "<cell>". $n_lvl."</cell>";

 if(!$row[parent_id]) $valp = 'NULL'; else $valp = $row[parent_id];

 echo "<cell><![CDATA[".$valp."]]></cell>";

 if($row[account_id] == $leafnodes[$row[account_id]]) $leaf='true'; else $leaf = 'false';

 echo "<cell>".$leaf."</cell>";

 echo "<cell>false</cell>";

 echo "</row>";

}

echo "</rows>";

User Modules jqGrid

- 113 -

User Modules

Tony, the developer of jqGrid, welcomes contributions from the user community to enhance the
functions of jqGrid. All will receive acknowledgement here.

Posting Data

Author: Paul Tiseo

Module name: grid.postext.js

Description: The main purpose of this module is to manipulate the parameters passed to the to url via
an array and to get user-defined data from the response. For user-defined data, please refer to Data
Types.

A new option, postData, is added to the option array of the grid. By default this is an empty array. The
values of this array are added via $.extend to the ajax request.

Installation: To enable this module you should enable it in jquery.jqGrid.js.

Manipulating parameters

To manipulate the values of the array we can use the following methods:

jQuery("#grid_id").getPostData() returns all parameters passed to the grid url. The returned value

is array of type name:value.

jQuery("#grid_id").setPostData(newdata) sets a new set of parameters overriding the existing
ones.

newdata should be array of type name:value. Example {myparam:"myvalue"} Note that the page,
rowNum, sortorder, sortname parameters are not changed. To change these use setGridParam method.

jQuery("#grid_id").appendPostData(newdata) replaces or appends new parameters to the array.
newdata should be array of type name;value

jQuery("#grid_id").setPostDataItem(Key, Val) sets new or replaces the value of the existing item
in the array. Key is the name and Val is the value of the item.

jQuery("#grid_id").getPostDataItem(key) returns the value of the requested item with name key

jQuery("#grid_id").removePostDataItem(key) deletes a specified item with name = key from the

array.

User Modules jqGrid

- 114 -

Formatter

Author: Joshua Burnett (josh@9ci.com)

Module name: jquery.fmatter.js

Description: Formatter supports advanced formatting of the contents of cells in form, in-line and cell
editing.

Formatter can be used in either of two ways: Predefined and Custom.

Predefined formats

Default formatting functions are defined in the language files e.g., grid.locale-xx (where xx is your
language). To modify these, open the language file and search for "$.jgrid.formatter". Here you will find
all the settings that you may want to review or change before using the predifined formats. These

settings can also be overridden for specific columns using the FormatOptions parameter, described
below.

The second step is to set the desired formatting in colModel. This is done using the option formatter. For
example

colModel :[

 ...

 {name:'myname', ... formatter:'number', ...},

 ...

]

will format the contents of the 'myname' column according to the rules set for 'number' in the actve
language file.

The predefined types are

 integer
 number
 currency
 date (uses formats compatable with php function date. For more info visit www.php.net)
 checkbox
 mail

 link
 showlink
 select (this is not a real select but a special case for editing modules. See note below)

The types are treated as normal strings and must be enclosed in single or double quotes.

All predefined types are compatible with the editing modules. This means that the numbers, links, e-
mails, etc., are converted so that they can be edited correctly.

Note: Type = 'Select'

The select type is not real select. This is used when we use some editing module and have

edittype:'select'. Before this release we pass the value of the select in grid and not the key. For example:
colModel : [

 {name:'myname', edittype:'select', editoptions:{value:"1:One;2:Two"}}

...

]

mailto:josh@9ci.com
www.php.net

User Modules jqGrid

- 115 -

In this case the data for the grid should contain "One" or "Two" to be set in the column myname.

Now, with this setting

colModel : [

 {name:'myname', edittype:'select', formatter:'select', editoptions:{value:"1:One;2:Two"}}

...

]

the data should contain the keys "1" or "2", but the value will be displayed in the grid.

Custom formats

You can define your own formatter for a particular row. Usually this is a function. When set in the
formatter option this should not be enclosed in quotes and not entered with () - show just the name of
the function. For example,

colModel:[

...

 {name:'price', index:'price', width:60, align:"center", editable: true, formatter:currencyFmatter},

...

]

jqGrid passes 3 parameters to this function:

 el - the element
 cellval - the cell value
 opts - a set of options containing

o rowId - the id of the row

o colModel - the colModel for this column
o rowData - the data for this row

The array looks something like this: {rowId: row.id, colModel:cm, rowData:row}

For example:

currencyFmatter = function(el, cellval, opts){

 $(el).html(formatCurrency(cellval));

}

function formatCurrency(num) {

 if(!num) return;

 num = num.toString().replace(/\$|\,/g,'');

 if(isNaN(num))

 num = "0";

 sign = (num == (num = Math.abs(num)));

 num = Math.floor(num*100+0.50000000001);

 cents = num%100;

 num = Math.floor(num/100).toString();

 if(cents<10)

 cents = "0" + cents;

 for (var i = 0; i < Math.floor((num.length-(1+i))/3); i++)

 num = num.substring(0,num.length-(4*i+3))+','+

 num.substring(num.length-(4*i+3));

 return (((sign)?'':'-') + '$' + num + '.' + cents);

}

User Modules jqGrid

- 116 -

Formatter Options

Formatter options can be defined for particular columns, overwriting the defaults from the language file.
This is accomplished by using the formatoptions array in colModel. For example:

colModel : [

...

{name:"myname"... formatter:'currency', formatoptions:{decimalSeparator:",", thousandsSeparator: " ",

decimalPlaces: 2, prefix: "$ "}},

...

]

This definition will overrite the default one from the language file. In formatoptions should be placed
values appropriate for the particular format type

Type Options

integer {thousandsSeparator: " ", defaulValue: 0}

number {decimalSeparator:".", thousandsSeparator: " ", decimalPlaces: 2, defaulValue: 0}

currency {decimalSeparator:".", thousandsSeparator: " ", decimalPlaces: 2, prefix: "",
suffix:"", defaulValue: 0}

date {srcformat: 'Y-m-d',newformat: 'd/m/Y'}

showlink {baseLinkUrl: '',showAction: 'show'}

User Modules jqGrid

- 117 -

Show/Hide Columns

Author: Piotr Roznicki roznicki@o2.pl

Module name: modal dialog

Description: Display a modal window where the user can select which column to show and hide.

Installation: the new release of jquery.jqGrid.js defaults to this module being enabled, so ensure that
grid.setcolumns.js and grid.setcolumns-min.js are copied to the appropriate folders. If you do not wish
to include this function, make the appropriate change to jquery.jqGrid.js.

Calling Convention:

jQuery("#mybutton").click(function() {

 jQuery("#grid_id").setColumns(params);

});

where params is an array of name: value pairs, including any of the following:

Parameters

Property Description Default

top the initial top position of the modal dialog 0

left the initial left position of the modal dialog 0

width the width of the modal dialog 200

height the height of the modal dialog 185

modal sets dialog in modal mode false

drag the dialog is dragable true

beforeShowForm a function that fires before showing the modal dialog (parameter is
the id of the form)

null

afterShowForm a function that fires after showing the modal dialog (parameter is
the id of the form)

null

Note: To prevent showing or hiding columns that the developer does not want to show at all, a new
option has been added to colModel: hidedlg (default false). If set to true this column will not appear in

the modal dialog.

mailto:roznicki@o2.pl

User Modules jqGrid

- 118 -

Table to jqGrid

Author: Peter Romianowski peter.romianowski@optivo.de

Module name: tbltogrid

Description: Convert existing html table to grid.

Installation: the new release of jquery.jqGrid.js defaults to this module being enabled, so ensure that
grid.tbltogrid.js and grid.tbltogrid-min.js are copied to the appropriate folder. If you do not wish to
include this function, make the appropriate change to jquery.jqGrid.js.

Calling Convention:

tableToGrid(selector)

where selector(string) can be either the table's class or id

The html table should have the following structure:

<table class="mytable"> (or <table id="mytable">)

 <tr>

 <th> header 1 </th>

 <th> header 2 </th>

 ...

 </tr>

 <tbody>

 <tr>

 <td> data 1 </td>

 <td> data 1 </td>

 ...

 </tr>

 <tr>

 <td> data 1 </td>

 <td> data 1 </td>

 ...

 </tr>

 </tbody>

<table>

mailto:peter.romianowski@optivo.de

Case Applications jqGrid

- 119 -

Case Applications

This section adds to the live examples provided elsewhere on the jqGrid site, by focussing on specific
techniques for solving particular problems. These solutions may not be the only way to answer the
questions raised, but may provide enough for you to think of your own preferred approach.

We have tried to present these as a dialogue between a developer needing to build a specific interface,
and an expert in jqGrid.

Images in Grids

I understand how and why jqGrid shows Yes or No (or True or False) for boolean data, but I would very
much prefer to show a checkbox, checked or unchecked. How can I do this?

If you are not using in-line editing, this is quite manageable, by including extra, hidden, columns in your
grid. Then, show the column containing the image in the grid and edit the column containing the real
data in the form. What we might end up with is a grid looking something like this:

while in the Edit form, we still deal with boolean settings, like this:

(These boolean fields could be shown on the Edit form as checkboxes, if you prefer. We are treating
them as dropdowns rather than checkboxes for other reasons: when we use them in the Search form, we

Case Applications jqGrid

- 120 -

want to include a third option -- no preference or All -- so there we have to use a dropdown, and there is

no way to show different controls for the same field in the Search and Edit forms.)

The colModel for this grid includes duplicate fields for Active and Default (colNames, of course, also has
to include names for these extra columns):

colNames: ['Division','Branch','Head','Active','Active','Default','Default'],

colModel [...

{name:'active', align:'center', hidden:true, editable:true, edittype:'select',

editoptions:{value:'Yes:Yes;No:No'}, defval:'Yes', editrules:{edithidden:true, searchhidden:true}, width:80 },

{name:'activeimage', align:'center', sortable:false, search:false, editable:false, width:80 },

{name:'default', align:'center', hidden:true, editable:true, edittype:'select',

editoptions:{value:'Yes:Yes;No:No'}, editrules:{edithidden:true, searchhidden:true}, width:80 },

{name:'defaultimage', align:'center', sortable:false, search:false, editable:false, width:80 }],

The "real" Active and Default coulmns are hidden in the grid but are editable and searchable, while the
"image" columns are neither editable nor searchable so they do not show anywhere other than in the
grid. The colNames are identical so that the same caption appears in the grid, the Search form and the
Edit form.

To then apply the correct image to the grid, we need to set reloadAfterSubmit to True in the form
definition so that we refresh the grid with the new data.

var addprm = {

 width: 450,

 height: 200,

 top: 125,

 left: 50,

 reloadAfterSubmit:true,

 closeAfterAdd:true

 };

And, just to be sure we are clear on how this is used, addprm is referenced in our definition of the pager:

$("#tblcontents").navGrid('#tblcontentsPager',{

 add:true,addtext:'Add',edit:true, edittext:'Edit',del:true,

deltext:'Delete',search:false,refresh:false

 },

 editprm, // edit

 addprm, // add

 delprm // delete

);

Dynamic Editing Forms

I want to be able to construct an edit form that contains some fields that show only conditionally, that is,
only when the operator enters (or does not enter) data into some visible field. For example, when
posting a bank deposit, if the operator enters the number of the invoice the deposit is paying, I can
populate a lot of fields automatically, and do not need to capture some data; but if the payment is not
against an invoice I have to ask for more details.

The important points to consider here are that

 all columns in the grid are included as fields on the form when the form is created; those that are
not editable or are hidden just do not show (display:none).

 all rows on the form (that is, the table row containing the label and the field) are identified with a
unique name tr_fieldname where fieldname is the name of the field in the grid.

 jqGrid supports hiding and showing rows on the form with hide() and show()

Case Applications jqGrid

- 121 -

In general then, we can use

$("#tr_fieldname",formid).hide()

and
$("#tr_fieldname",formid).show()

Example

In this snippet, when the operator leaves the Invoice field, we check to see if something has been

entered. If we have an invoice number, then we try to retrieve the related data from the server. If the
Invoice number is valid, we show the data returned and hide the fields we no longer need.

function CheckInvoice(formid) {

 var invno = 'invoice=' + $("#invoice",formid).val() ;

 if (invno == 'invoice=') {

 alert("invoice is blank; please enter account #")

 } else {

 $.getJSON(searchinvoice, invno, function(data) {

 if (data.status == 'No match found; please try again') {

 alert(data.status)

 } else {

 // Load the fields we know about

 $("#invoiced",formid).val(data.invoiced);

 $("#outstanding",formid).val(data.os);

 $("#acctname",formid).val(data.account);

 $("#project",formid).val(data.project);

 // Disabled loaded fields

 $("#acctname",formid).attr('disabled',true);

 $("#project",formid).attr('disabled',true);

 // Hide unneeded fields

 $("#tr_comment",formid).hide();

 $("#tr_projectnumber",formid).hide();

 $("#tr_shorttitle",formid).hide();

 $("#tr_client",formid).hide();

 ...

Case Applications jqGrid

- 122 -

What it looks like is this, before anything has been entered:

and, after the operator has entered an Invoice number:

Now we can further enhance this by hiding some fields at the start, and showing them only when they
are needed, thereby creating dynamic editing forms that respond to what the operator has done and still

needs to do.

Case Applications jqGrid

- 123 -

Search Forms

The search or filter function of jqGrid is a great idea, but I want to have my search form appear above
my table, all the time, as a reminder of or quick reference to what has been selected, rather than
appearing only when the search button on the navigation bar is clicked.

Let's start at the very beginning. In your html, add a div where you want the search form to appear (in
this example it has the id of "srccontents" and appears above the jqGrid table marker).

<div id="srccontents"></div>

<table id="tblcontents" class="scroll"></table>

<div id="tblcontentsPager" class="scroll" style="text-align:right;"></div>

Next, for a very simple search/filter form, add to the definition of your jqGrid the following:

$("#srccontents").filterGrid("tblcontents",{

 gridModel:true,

 gridNames:true,

 formtype:"vertical",

 enableSearch: false,

 enableClear: false,

 autosearch: true

 });

And jqGrid takes it from there. Every column that is visible in the grid will now appear in the search form
above your table, something like this (it helps to imagine that this table contains far more entries than it
really does, some number large enough to need filtering to see, for example, only the Divisions for a
particular Branch):

That's all very nice, but I don't want to search on every column; the division name, for instance, is
unique and easily found simply scrolling through the grid.

You can easily exclude any column from the search form by adding search:false in your definition of that
column in the grid, as shown here:

colModel: [{name:'division', search:false, editable:true, editoptions:{size:'50', maxlength:'25'}, width:250

},

Case Applications jqGrid

- 124 -

Note that the syntax is slightly different from other similar options: it is editable and sortable, but
search, not searchable.

Cool. But it really would be better to have default search conditions applied when the page first appears,
e.g. I want to see only those divisions that are Active because those are the ones the operator is most
likely to want to work with.

This example shows the same table as above (with the search on Division name removed), and with the
Active search option selected so that only the active entries are included in the table. Again, imagine that
there are many more that are no longer active, and while we have to keep them in the data (so that
older entries in other tables are not orphaned), we hardly ever want to access them again. So, when we
come to this page, we want to see only the Active divisions, with an option to see all should we need to.

There are three steps to take to achieve this situation:

1. set the datatype of the table to 'local' when first defined, so that it does not retrieve any data,

2. set the default values you want applied when the page first appears (you may have to scroll to
the far right to see this: defval:'Yes' on the Active line), and

3. after the grid has been created, change the datatype back to 'xml' (or whatever you wish to use
to retrieve the data) and trigger a search

For example:

 $("#tblcontents").jqGrid({

 url: 'your url for retrieving data',

 datatype: 'local',

 colNames: ['Division','Section','Head','Active','Active','Default','Default'],

 colModel: [{name:'division', search:false, editable:true, editoptions:{size:'50', maxlength:'25'},

width:250 },

 {name:'branch', sortable:false, editable:true, edittype:'select', editoptions:{value:' :;1:Head

Office;2:International Office;4:Northwest Region;3:Regional Office;5:SouthEast Region'}, width:125 },

 {name:'head', sortable:false, editable:true, edittype:'select', editoptions:{value:' :;14:Bleu,

Elizabeth;17:Alderson, Bernard;20:Bakerson, Cathy;27:Catterson, Harrold;39:Davidson, John; ... and many

more'}, width:125 },

 {name:'active', align:'center', hidden:true, sortable:false, editable:true, edittype:'select',

editoptions:{value:'Yes:Yes;No:No'}, editrules:{edithidden:true, searchhidden:true}, defval:'Yes', width:80 },

 {name:'activeimage', align:'center', sortable:false, search:false, editable:false, width:80 },

 {name:'default', align:'center', hidden:true, sortable:false, editable:true, edittype:'select',

editoptions:{value:'Yes:Yes;No:No'}, editrules:{edithidden:true, searchhidden:true}, width:80 },

 {name:'defaultimage', align:'center', sortable:false, search:false, editable:false, width:80 }],

 height: 'auto',

Case Applications jqGrid

- 125 -

 pager: $('#tblcontentsPager'),

 rowNum:10,

 rowList:[10,25,50,100,999],

 page: 1,

 sortname: 'Division',

 sortorder: 'asc',

 viewrecords: true,

 imgpath: '../scripts/jqGrid/themes/basic/images',

 hidegrid: false,

 caption: 'Divisions',

 editurl:editurl,

 loadError: function(xhr,st,err) {

 $("#tblcontentsMessage").html("Type: "+st+"; Response: "+ xhr.status + " "+xhr.statusText);

 },

 ondblClickRow: function(rowid) { $("#tblcontents").editGridRow(rowid,editprm);}

 });

 $("#srccontents").filterGrid("tblcontents",{

 gridModel:true,

 gridNames:true,

 formtype:"vertical",

 enableSearch: false,

 enableClear: false,

 autosearch: false

 });

 $("#tblcontents").setGridParam({datatype:'xml'});

 var ts = $('#srccontents')[0];

 ts.triggerSearch()

That's very nice, but… I have to have different options in the Search form than in the Edit form. For

example, an item in the table is either Active or it is not; there is no valid option of 'not specified' or
'unknown', so for the Edit form the options for the Active drop-down include only 'Yes' and 'No'. But in
the Search form, it is quite possible that I want to see all items regardless of whether they are active or
not, so I also need to provide for 'All'.

For this, we need to provide two different lists of options: one for the Edit form and one for the Search
form. The Edit form list of options is already defined within the colModel; for the Search form options we
use another feature of the colModel: surl -- search url. (Scroll to the right in the following example, again

on the Active line.)

colNames: ['Division','Branch','Head','Active','Active','Default','Default'],

colModel [...

 {name:'active', align:'center', hidden:true, editable:true, edittype:'select',

editoptions:{value:'Yes:Yes;No:No'}, editrules:{edithidden:true, searchhidden:true}, defval:'Yes', surl:

activeurl, width:80 },

 {name:'activeimage', align:'center', sortable:false, search:false, editable:false, width:80 },

 {name:'default', align:'center', hidden:true, editable:true, edittype:'select',

editoptions:{value:'Yes:Yes;No:No'}, editrules:{edithidden:true, searchhidden:true}, surl: activeurl, width:80

},

 {name:'defaultimage', align:'center', sortable:false, search:false, editable:false, width:80 }],

where activeurl has been defined somewhere in your javascript as in the following example:

var activeurl = 'AjaxSearch~&Field=Active';

In the following snippet, the three options (blank, Yes and No) make up the dropdown for Active (they
overlap the Default dropdown):

Case Applications jqGrid

- 126 -

It really would be useful to be able to search on Branch and Division Head as well. But as I may want to

set combinations of search criteria, I don't want the search to happen automatically as soon as I change
one of them. Plus, I'll want to undo any search criteria and return to the default easily.

That change is easily accommodated. In your search form definition, set enableSearch and enableClear
to 'true', and set autosearch to 'false', as shown here:

$("#srccontents").filterGrid("tblcontents",{

 gridModel:true,

 gridNames:true,

 formtype:"vertical",

 enableSearch: true,

 enableClear: true,

 autosearch: false

 });

With this, you now get buttons to start the search or to clear (actually, return to the default settings)
and nothing happens until a button is clicked.

Trouble-Shooting jqGrid

- 127 -

Trouble-Shooting

Apart from errors in javascript or html, which we can not do much to warn you about, there are some
things that might regularly bite the unwary or careless.

Length of colNames <> colModel or 0!

The problem is in the grid definition: the number of columns defined in colNames is not the same as the
number of columns defined in colModel -- you've probably added a new column to the colModel and
forgotten to add it to colNames.

Expected]

If this refers to your colNames line, you've probably missed a quote mark around one of the names.

'ts.p.colModel[...].align' is null or not an object

This one means you are sending too many columns of data from the server. If you send too few, then

the grid will appear but one or more columns may be missing with data showing up in the wrong
column; if you have more hidden fields then missing columns, you might not see this effect until you edit
a row and see that one or more fields are not showing up there.

